
SIEMENS

Ausgabe 04/2018

Funktionshandbuch

SINAMICS

SINAMICS G110M, G120, G120P, G120C, G120D

Feldbusse

www.siemens.com/drives

SIEMENS

SINAMICS

SINAMICS G120, G120P, G120C, G120D, G110M Feldbusse

Funktionshandbuch

Vorwort	
Grundlegende Sicherheitshinweise	1
Kapitelübergreifende Informationen	2
Kommunikation über PROFIBUS und PROFINET	3
Kommunikation über EtherNet/IP	4
Kommunikation über RS485	5
Kommunikation über CANopen	6
Kommunikation über AS-i - nur für G110M	7
Anhang	Α

Ausgabe 04/2018, Firmware V4.7 SP10

Rechtliche Hinweise

Warnhinweiskonzept

Dieses Handbuch enthält Hinweise, die Sie zu Ihrer persönlichen Sicherheit sowie zur Vermeidung von Sachschäden beachten müssen. Die Hinweise zu Ihrer persönlichen Sicherheit sind durch ein Warndreieck hervorgehoben, Hinweise zu alleinigen Sachschäden stehen ohne Warndreieck. Je nach Gefährdungsstufe werden die Warnhinweise in abnehmender Reihenfolge wie folgt dargestellt.

MGEFAHR

bedeutet, dass Tod oder schwere Körperverletzung eintreten **wird**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

∕NWARNUNG

bedeutet, dass Tod oder schwere Körperverletzung eintreten **kann**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

⚠VORSICHT

bedeutet, dass eine leichte Körperverletzung eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

ACHTUNG

bedeutet, dass Sachschaden eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Beim Auftreten mehrerer Gefährdungsstufen wird immer der Warnhinweis zur jeweils höchsten Stufe verwendet. Wenn in einem Warnhinweis mit dem Warndreieck vor Personenschäden gewarnt wird, dann kann im selben Warnhinweis zusätzlich eine Warnung vor Sachschäden angefügt sein.

Qualifiziertes Personal

Das zu dieser Dokumentation zugehörige Produkt/System darf nur von für die jeweilige Aufgabenstellung qualifiziertem Personal gehandhabt werden unter Beachtung der für die jeweilige Aufgabenstellung zugehörigen Dokumentation, insbesondere der darin enthaltenen Sicherheits- und Warnhinweise. Qualifiziertes Personal ist auf Grund seiner Ausbildung und Erfahrung befähigt, im Umgang mit diesen Produkten/Systemen Risiken zu erkennen und mögliche Gefährdungen zu vermeiden.

Bestimmungsgemäßer Gebrauch von Siemens-Produkten

Beachten Sie Folgendes:

. WARNUNG

Siemens-Produkte dürfen nur für die im Katalog und in der zugehörigen technischen Dokumentation vorgesehenen Einsatzfälle verwendet werden. Falls Fremdprodukte und -komponenten zum Einsatz kommen, müssen diese von Siemens empfohlen bzw. zugelassen sein. Der einwandfreie und sichere Betrieb der Produkte setzt sachgemäßen Transport, sachgemäße Lagerung, Aufstellung, Montage, Installation, Inbetriebnahme, Bedienung und Instandhaltung voraus. Die zulässigen Umgebungsbedingungen müssen eingehalten werden. Hinweise in den zugehörigen Dokumentationen müssen beachtet werden.

Marken

Alle mit dem Schutzrechtsvermerk ® gekennzeichneten Bezeichnungen sind eingetragene Marken der Siemens AG. Die übrigen Bezeichnungen in dieser Schrift können Marken sein, deren Benutzung durch Dritte für deren Zwecke die Rechte der Inhaber verletzen kann.

Haftungsausschluss

Wir haben den Inhalt der Druckschrift auf Übereinstimmung mit der beschriebenen Hard- und Software geprüft. Dennoch können Abweichungen nicht ausgeschlossen werden, so dass wir für die vollständige Übereinstimmung keine Gewähr übernehmen. Die Angaben in dieser Druckschrift werden regelmäßig überprüft, notwendige Korrekturen sind in den nachfolgenden Auflagen enthalten.

Vorwort

Über dieses Handbuch

Dieses Handbuch beschreibt die Einstellungen und Voraussetzungen, die erforderlich sind, um über die nachfolgend aufgelisteten Feldbussysteme mit einer überlagerten Steuerung zu kommunizieren.

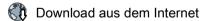
Feldbusse für SINAMICS G120

- PROFIBUS DP
- PROFINET
- EtherNet/IP
- USS
- Modbus RTU
- CANopen

Zusätzliche Feldbusse für SINAMICS G120P

- BACnet MS/TP
- P1

Zusätzliche Feldbusse für SINAMICS G110M


AS-interface

Änderungen in dieser Ausgabe

Umrichtereinstellungen werden anhand des PC-Inbetriebnahme-Tools Startdrive beschrieben. Die Beschreibungen für die Einstellungen mit STARTER wurden entfernt.

Was bedeuten die Symbole im Handbuch?

Bestellbare DVD

Ende einer Handlungsanweisung.

Inhaltsverzeichnis

	Vorwort		3
1	Grundlege	ende Sicherheitshinweise	g
	1.1	Allgemeine Sicherheitshinweise	g
	1.2	Gewährleistung und Haftung für Applikationsbeispiele	g
	1.3	Industrial Security	10
2	Kapitelüb	ergreifende Informationen	13
	2.1	Verwendete Ethernet- und PROFINET-Protokolle	
3	Kommuni	kation über PROFIBUS und PROFINET	17
	3.1 3.1.1 3.1.1.2 3.1.1.3 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.6.1 3.1.7	PROFIdrive-Profil - Zyklische Kommunikation Belegung der Steuer- und Zustandswörter Steuer- und Zustandswort 1 Steuer- und Zustandswort 2 Steuer- und Zustandswort 3 NAMUR Meldewort Steuer- und Zustandswort Geber Lageistwert des Gebers Telegramme erweitern und Signal-Verschaltung ändern Datenstruktur des Parameterkanals Anwendungsbeispiele Querverkehr	21 25 26 28 31 33
	3.2	PROFIdrive-Profil - Azyklische Kommunikation	42
	3.3 3.3.1 3.3.2	PROFIdrive-Profil - Diagnosekanäle Diagnose mit PROFINET Diagnose mit PROFIBUS	48 50
	3.4	Identifikation & Maintenance Daten (I&M)	54
	3.5 3.5.1	S7-Kommunikation Direkter Zugriff auf einen SINAMICS-G120-Umrichter mit einem SIMATIC-Panel	
	3.6 3.6.1 3.6.2 3.6.3 3.6.3.1 3.6.3.2 3.6.3.3 3.6.3.4	Kommunikation über PROFINET. Umrichter mit PROFINET-Schnittstelle. Umrichter in PROFINET integrieren. PROFINET IO-Betrieb. Was müssen Sie für die Kommunikation über PROFINET einstellen? Kommunikation zur Steuerung konfigurieren. GSDML installieren. Diagnose über die Steuerung aktivieren.	61 63 63 63
	3.6.4 3.6.4.1 3.6.4.2 3.6.4.3 3.6.4.4	PRÖFlenergy Allgemeines Verhalten des Umrichters im PRÖFlenergy-Energiesparmodus Unterstützte PRÖFlenergy-Energiesparmodi Einstellungen und Anzeigen für PRÖFlenergy im Umrichter Steuerbefehle und Statusabfragen	66 66 67
	3.0.4.4	Sieuei dei ei iie ui iu Siaiusadii ayei i	00

	3.6.5	Der Umrichter mit PROFINET-Schnittstelle als Ethernet-Teilnehmer	70
	3.7 3.7.1 3.7.2 3.7.3 3.7.4 3.7.4.1 3.7.4.2 3.7.4.3 3.7.5	Kommunikation über PROFIBUS Umrichter mit PROFIBUS-Schnittstelle Was müssen Sie für die Kommunikation über PROFIBUS einstellen? Umrichter in PROFIBUS integrieren Kommunikation zur Steuerung konfigurieren Konfigurieren der Kommunikation mit einer SIMATIC S7-Steuerung Konfigurieren der Kommunikation mit einer Fremdsteuerung GSD installieren Adresse einstellen	
	3.8	Telegramm wählen	79
4	Kommunil	kation über EtherNet/IP	81
	4.1	Umrichter mit EtherNet/IP-Schnittstelle	82
	4.2	Umrichter an EtherNet/IP anschließen	84
	4.3	Was brauchen Sie für die Kommunikation über EtherNet/IP?	85
	4.4 4.4.1 4.4.2	Kommunikation über EtherNet/IP konfigurieren	86
	4.5 4.5.1	Unterstützte Objekte Unterstützte ODVA AC/DC Assemblies	
	4.6	Generisches I/O-Modul erzeugen	103
	4.7	Der Umrichter als Ethernet-Teilnehmer	104
5	Kommunil	kation über RS485	107
	5.1	Umrichter mit RS485-Schnittstelle	108
	5.2	Umrichter über die RS485-Schnittstelle in ein Bus-System integrieren	110
	5.3 5.3.1 5.3.1.1 5.3.1.2 5.3.2 5.3.3 5.3.4 5.3.4.1 5.3.5 5.3.6	Kommunikation über USS. Grundeinstellungen für die Kommunikation. Adresse einstellen. Parameter zum Einstellen der Kommunikation über USS. Telegrammstruktur. Nutzdatenbereich des USS-Telegramms. USS-Parameterkanal. Telegrammbeispiele, Länge des Parameterkanals = 4 USS-Prozessdatenkanal (PZD). Telegramm-Überwachung	111113114115116120
	5.4 5.4.1.1 5.4.1.2 5.4.2 5.4.3 5.4.4 5.4.5	Kommunikation über Modbus RTU. Grundeinstellungen für die Kommunikation	
	5.4.6	Schreib- und Lesezugriff über Function Codes	137
	5.4.7	Parameter azyklisch lesen und schreiben über FC 16	140

	5.4.7.1 5.4.7.2	Parameter lesen	142
	5.4.8 5.4.9	Ablauf der KommunikationApplikationsbeispiel	
	5.5 5.5.1	Kommunikation über BACnet MS/TP - nur CU230P-2 HVAC / BT	
	5.5.1.1	Adresse einstellen	148
	5.5.1.2	Parameter zum Einstellen der Kommunikation über BACnet	
	5.5.2 5.5.3	Unterstützte Dienste und Objekte	
	5.6	Kommunikation über P1 - nur CU230P-2 HVAC, CU230P-2 BT	162
	5.6.1	Grundeinstellungen für die Kommunikation über P1	
	5.6.2	Adresse einstellen	
6	5.6.3	Point Numbers	
6	6.1	Netzwerkmanagement (NMT-Service)	
	6.2	SDO-Dienste	
	6.2.1	Über SDO auf SINAMICS-Parameter zugreifen	
	6.2.2	Über SDO auf PZD-Objekte zugreifen	
	6.3	PDO-Dienste	
	6.3.1	Predefined Connection Set	
	6.3.2 6.3.3	Freies PDO-Mapping Objekte aus Empfangs- und Sendepuffer verschalten	
	6.3.4	Freies PDO-Mapping am Beispiel von Stromistwert und Momentengrenze	
	6.4	CANopen-Betriebsarten	191
	6.5	RAM nach ROM über das CANopen Objekt 1010	193
	6.6	Objektverzeichnisse	
	6.6.1	Allgemeine Objekte des Kommunikationsprofils CiA 301	
	6.6.2 6.6.3	Freie Objekte	
		•	
	6.7 6.7.1	Umrichter in CANopen integrieren Umrichter am CAN-Bus anschließen	
	6.7.2	Node-ID und Baudrate einstellen	
	6.7.3	Überwachung der Kommunikation einstellen	
	6.8	Fehlerdiagnose	210
	6.9	CAN-Bus-Abtastzeit	214
7	Kommuni	kation über AS-i - nur für G110M	215
	7.1	Adresse einstellen	217
	7.2	Single-Slave-Modus	219
	7.3	Dual Slave Modus	221
	7.4	Zuordnungstabellen	224
	7.5	Zyklische und azyklische Kommunikation über CTT2	
	7.5.1	Zvklische Kommunikation	///

	7.5.2	Azyklische Kommunikation - Standard	228
	7.5.3	Azyklische Kommunikation - Herstellerspezifisch	
Α	Anhang		231
	A.1	Anwendungsbeispiele zur Kommunikation mit STEP7	231
	A.2	Handbücher und technischer Support	232
	A.2.1	Übersicht der Handbücher	232
	A.2.2	Projektierungsunterstützung	236
	A.2.3	Produkt Support	
	Index		230

Grundlegende Sicherheitshinweise

1.1 Allgemeine Sicherheitshinweise

Lebensgefahr bei Nichtbeachtung von Sicherheitshinweisen und Restrisiken

Bei Nichtbeachtung der Sicherheitshinweise und Restrisiken in der zugehörigen Hardware-Dokumentation können Unfälle mit schweren Verletzungen oder Tod auftreten.

- Halten Sie die Sicherheitshinweise der Hardware-Dokumentation ein.
- Berücksichtigen Sie bei der Risikobeurteilung die Restrisiken.

∕¶WARNUNG

Fehlfunktionen der Maschine infolge fehlerhafter oder veränderter Parametrierung

Durch fehlerhafte oder veränderte Parametrierung können Fehlfunktionen an Maschinen auftreten, die zu Körperverletzungen oder Tod führen können.

- Schützen Sie die Parametrierungen vor unbefugtem Zugriff.
- Beherrschen Sie mögliche Fehlfunktionen durch geeignete Maßnahmen, z. B. NOT-HALT oder NOT-AUS.

1.2 Gewährleistung und Haftung für Applikationsbeispiele

Applikationsbeispiele sind unverbindlich und erheben keinen Anspruch auf Vollständigkeit hinsichtlich Konfiguration und Ausstattung sowie jeglicher Eventualitäten. Applikationsbeispiele stellen keine kundenspezifischen Lösungen dar, sondern sollen lediglich Hilfestellung bieten bei typischen Aufgabenstellungen.

Als Anwender sind Sie für den sachgemäßen Betrieb der beschriebenen Produkte selbst verantwortlich. Applikationsbeispiele entheben Sie nicht der Verpflichtung zu sicherem Umgang bei Anwendung, Installation, Betrieb und Wartung.

1.3 Industrial Security

Hinweis

Industrial Security

Siemens bietet Produkte und Lösungen mit Industrial Security-Funktionen an, die den sicheren Betrieb von Anlagen, Systemen, Maschinen und Netzwerken unterstützen.

Um Anlagen, Systeme, Maschinen und Netzwerke gegen Cyber-Bedrohungen zu sichern, ist es erforderlich, ein ganzheitliches Industrial Security-Konzept zu implementieren (und kontinuierlich aufrechtzuerhalten), das dem aktuellen Stand der Technik entspricht. Die Produkte und Lösungen von Siemens formen nur einen Bestandteil eines solchen Konzepts.

Der Kunde ist dafür verantwortlich, unbefugten Zugriff auf seine Anlagen, Systeme, Maschinen und Netzwerke zu verhindern. Systeme, Maschinen und Komponenten sollten nur mit dem Unternehmensnetzwerk oder dem Internet verbunden werden, wenn und soweit dies notwendig ist und entsprechende Schutzmaßnahmen (z. B. Nutzung von Firewalls und Netzwerksegmentierung) ergriffen wurden.

Zusätzlich sollten die Empfehlungen von Siemens zu entsprechenden Schutzmaßnahmen beachtet werden. Weiterführende Informationen über Industrial Security finden Sie unter:

Industrial Security (http://www.siemens.com/industrialsecurity)

Die Produkte und Lösungen von Siemens werden ständig weiterentwickelt, um sie noch sicherer zu machen. Siemens empfiehlt ausdrücklich, Aktualisierungen durchzuführen, sobald die entsprechenden Updates zur Verfügung stehen und immer nur die aktuellen Produktversionen zu verwenden. Die Verwendung veralteter oder nicht mehr unterstützter Versionen kann das Risiko von Cyber-Bedrohungen erhöhen.

Um stets über Produkt-Updates informiert zu sein, abonnieren Sie den Siemens Industrial Security RSS Feed unter:

Industrial Security (http://www.siemens.com/industrialsecurity)

Weitere Informationen finden Sie im Internet:

Projektierungshandbuch Industrial Security (https://support.industry.siemens.com/cs/ww/de/view/108862708)

MARNUNG

Unsichere Betriebszustände durch Manipulation der Software

Manipulationen der Software, z. B. Viren, Trojaner, Malware oder Würmer, können unsichere Betriebszustände in Ihrer Anlage verursachen, die zu Tod, schwerer Körperverletzung und zu Sachschäden führen können.

- · Halten Sie die Software aktuell.
- Integrieren Sie die Automatisierungs- und Antriebskomponenten in ein ganzheitliches Industrial Security-Konzept der Anlage oder Maschine nach dem aktuellen Stand der Technik.
- Berücksichtigen Sie bei Ihrem ganzheitlichen Industrial Security-Konzept alle eingesetzten Produkte.
- Schützen Sie die Dateien in Wechselspeichermedien vor Schadsoftware durch entsprechende Schutzmaßnahmen, z. B. Virenscanner.
- Schützen Sie den Antrieb vor unberechtigten Änderungen, indem Sie die Umrichterfunktion "Know-How-Schutz" aktivieren.

Kapitelübergreifende Informationen

Kommunikation mit der Steuerung, auch bei abgeschalteter Netzspannung

Wenn in Ihrer Anlage die Kommunikation mit der Steuerung auch bei abgeschalteter Netzspannung weiter laufen soll, müssen Sie den Umrichter / die Control Unit extern mit DC 24 V versorgen. Verwenden Sie dazu die Klemmen 31 und 32, bzw. den Stecker X01. Weitere Details finden Sie in der Betriebsanleitung des Umrichters, bzw. der Control Unit.

2.1 Verwendete Ethernet- und PROFINET-Protokolle

Der Umrichter unterstützt die in den folgenden Tabellen aufgeführten Protokolle. Für jedes Protokoll sind die Adressparameter, die betroffene Kommunikationsschicht sowie die Kommunikationsrolle und Kommunikationsrichtung angegeben.

Diese Informationen benötigen Sie um die Sicherheitsmaßnahmen, z. B. in der Firewall, zum Schutz des Automatisierungssystems einzustellen.

Da sich Security-Maßnahmen auf Ethernet- bzw. PROFINET-Netze beschränken, sind in der Tabelle keine PROFIBUS-Protokolle aufgeführt.

Tabelle 2- 1 PROFINET-Protokolle

Protokoll	Port- nummer	Layerschicht (2) Link-Layer-Schicht	Funktion / Beschreibung		
		(4) Transportschicht			
DCP: Discovery and configuration protocol	nicht relevant	(2) Ethernet II and IEEE 802.1Q and Ethertype 0x8892 (PROFINET)	Erreichbare Teilnehmer, PROFINET Discovery and configuration DCP wird von PROFINET verwendet, um PROFINETGeräte zu ermitteln und Grundeinstellungen zu ermöglichen. DCP verwendet die spezielle Mulitcast-MAC-Adresse: xx-xx-xx-01-0E-CF,		
LLDP:	nicht	(2) Ethernet II and	xx-xx-xx = Organizationally Unique Identifier PROFINET Link Layer Discovery protocol		
Link Layer Discovery protocol	relevant	IEEE 802.1Q and Ethertype 0x88CC (PROFINET)	LLDP wird von PROFINET verwendet, um Nachbarschaftsbeziehun gen zwischen PROFINET-Geräten zu ermitteln und zu verwalten. LLDP verwendet die spezielle Mulitcast-MACAdresse: 01-80-C2-00-00-0E		
MRP:	nicht	(2) Ethernet II and	PROFINET medium redundancy		
Media Redundancy Protocol		IEEE 802.1Q and Ethertype 0x88E3 (PROFINET)	MRP ermöglicht die Steuerung von redundanten Übertragungswegen durch eine Ringtopologie. MRP verwendet die spezielle Mulitcast-MAC-Adresse:		
			xx-xx-xx = Organizationally Unique Identifier		
PTCP Precision Transparent Clock Protocol	nicht relevant	(2) Ethernet II and IEEE 802.1Q and Ethertype 0x8892 (PROFINET)	PROFINET send clock and time synchronisation, based on IEEE 1588 Mit PTC wird die für den IRT-Betrieb erforderliche Sendetakt-Synchronisation und Zeitsynchronisation zwischen RJ45 Ports realisiert. PTCP verwendet die spezielle Mulitcast-MACAdresse: xx-xx-xx-01-0E-CF, xx-xx-xx = Organizationally Unique Identifier		
PROFINET IO data	nicht relevant	(2) Ethernet II and IEEE 802.1Q and Ethertype 0x8892 (PROFINET)	PROFINET Cyclic IO data transfer Die PROFINET-IO Telegramme werden verwendet, um IO-Daten zyklisch zwischen PROFINET IO-Controller und IO-Devices über Ethernet zu übertragen.		
PROFINET	34964	(4) UDP	PROFINET connection less RPC		
Context Mana- ger			Der PROFINET Context Manager stellt einen Endpoint-Mapper zur Verfügung, um eine Applikationsbeziehung (PROFINET AR) herzustellen.		

Tabelle 2- 2 EtherNet/IP Protokolle

Protokoll	Port- nummer	Layerschicht (2) Link-Layer-Schicht (4) Transportschicht	Funktion / Beschreibung
Implicit mes- saging	2222	(4) UDP	Verwendet für den Austausch von I/O-Daten. Ist im Auslieferzustand inaktiv. Wird bei Anwahl von EtherNet/IP aktiviert.
Explicit mes- saging	44818	(4) TCP (4) UDP	Verwendet für Parameterzugriff (schreiben, lesen). Ist im Auslieferzustand inaktiv. Wird bei Anwahl von EtherNet/IP aktiviert.

Tabelle 2-3 Verbindungsorientierte Kommunikationsprotokolle

Protokoll	Port- nummer	Layerschicht (2) Link-Layer-Schicht (4) Transportschicht	Funktion / Beschreibung
ISO on TCP	102	(4) TCP	ISO-on-TCP protocol
(gemäß RFC 1006)			ISO on TCP (gemäß RFC 1006) dient zum nachrichtenorientierten Datenaustausch an entfernte CPU, WinAC oder Geräte anderer Anbieter.
			Kommunikation mit ES, HMI, usw. Ist in der Werkseinstellung aktiviert und wird immer benötigt.
SNMP	161	(4) UDP	Simple network management protocol
Simple network management protocol			SNMP ermöglicht das Auslesen und Setzen von Netzwerk- Management-Daten (SNMP managed Objects) durch SNMP- Manager.
			Ist in der Werkseinstellung aktiviert und wird immer benötigt
Reserved	49152 65535	(4) TCP (4) UDP	Dynamischer Port-Bereich, der für den aktiven Verbindungsendpunkt verwendet wird, wenn die Applikation die lokale Portnummer nicht bestimmt.

2.1 Verwendete Ethernet- und PROFINET-Protokolle

Kommunikation über PROFIBUS und PROFINET

PROFIdrive-Profil - Zyklische Kommunikation 3.1

Je nach Control Unit bzw. Umrichter gibt es unterschiedliche Telegramme für die Kommunikation über PROFIBUS DP oder PROFINET IO. Nachfolgend finden Sie den Aufbau der einzelnen Telegramme.

Das Inbetriebnahme-Tool Startdrive oder ein Operator Panel bieten Ihnen nur die Telegramme zur Auswahl an, die mit Ihrem Umrichter möglich sind.

Die Inbetriebnahme des Umrichters und die Auswahl eines Telegramms sind in der Betriebsanleitung beschrieben.

☐ Übersicht der Handbücher (Seite 232)

Kommunikations-Telegramme bei konfiguriertem "Einfachpositionierer"

Wenn Sie die Funktion "Einfachpositionierer" konfiguriert haben, verfügt der Umrichter über die folgenden Telegramme:

- Standard Telegramm 7, PZD-2/2
- Standard Telegramm 9, PZD-10/5
- SIEMENS Telegramm 110, PZD-12/7
- SIEMENS Telegramm 111, PZD-12/12
- Telegramm 999, freie Verschaltung

Die Telegramme 7, 9, 110 und 111 sind beschrieben im Funktionshandbuch "Einfachpositionierer".

Übersicht der Handbücher (Seite 232)

Kommunikations-Telegramme für die Drehzahlregelung

Die Sende- und Empfangstelegramme des Umrichters für die Drehzahlregelung sind wie folgt aufgebaut:

Telegramm 1

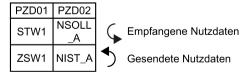


Bild 3-1 Drehzahlsollwert 16 Bit

3.1 PROFIdrive-Profil - Zyklische Kommunikation

Telegramm 2

PZD01	PZD02	PZD03	PZD04
STW1	NSO	STW2	
ZSW1	NIST_B		ZSW2

Bild 3-2 Drehzahlsollwert 32 Bit

Telegramm 3

PZD01	PZD02	PZD03	PZD04	PZD05	PZD06	PZD07	PZD08	PZD09
STW1	NSO	LL_B	STW2	G1_ STW				
ZSW1	NIS	T_B	ZSW2	G1_ ZSW	G1_X	(IST1	G1_>	(IST2

Bild 3-3 Drehzahlsollwert 32 Bit mit 1 Lagegeber

Telegramm 4

PZD01	PZD02	PZD03	PZD04	PZD05	PZD06	PZD07	PZD08	PZD09	PZD10	PZD11	PZD12	PZD13	PZD14
STW1	NSO	LL_B	STW2	G1_ STW	G2_ST W								
ZSW1	NIS	T_B	ZSW2	G1_ ZSW	G1_X	(IST1	G1_X	(IST2	G2_ ZSW	G2_X	(IST1	G2_X	(IST2

Bild 3-4 Drehzahlsollwert 32 Bit mit 2 Lagegebern

Telegramm 20

PZD01	PZD02	PZD03	PZD04	PZD05	PZD06
STW1	NSOLL_				
	Α				
70\\\/1	NIST_A	IAIST_	MIST_	PIST_	MELD_ NAMUR
23//1	GLATT	GLATT	GLATT	GLATT	NAMUR

Bild 3-5 Drehzahlsollwert 16 Bit für VIK-Namur

Telegramm 350

PZD01	PZD02	PZD03	PZD04
STW1	NSOLL _A	M_LIM	STW3
ZSW1	NIST_A GLATT	IAIST_ GLATT	ZSW3

Bild 3-6 Drehzahlsollwert 16 Bit mit Momentenbegrenzung

Telegramm 352

PZD01	PZD02	PZD03	PZD04	PZD05	PZD06	
STW1	_A	Prozessdaten für PCS7				
ZSW1	NIST_A GLATT	IAIST_ GLATT	MIST_ GLATT	WARN_ CODE	FAULT_ CODE	

Bild 3-7 Drehzahlsollwert 16 Bit für PCS7

Telegramm 353

	PZD01	PZD02
	STW1	NSOLL _A
	ZSW1	NIST_A GLATT

Bild 3-8 Drehzahlsollwert 16 Bit mit PKW-Bereich zum Lesen und Schreiben von Parametern

Telegramm 354

		PZD01	PZD02	PZD03	PZD04	PZD05	PZD06
	30/-	STW1	NSOLL _A	Prozess	daten für	PCS7	
ΙÏ	.vv –	ZSW1	NIST_A				
		1 1 2000	GLATT	GLATT	GLATT	CODE	CODE

Bild 3-9 Drehzahlsollwert 16 Bit für PCS7 mit PKW-Bereich zum Lesen und Schreiben von Parametern

Telegramm 999

PZD01	PZD02	PZD03	PZD04	PZD05	PZD06	PZD07	PZD08	PZD09	PZD10	PZD11	PZD12	PZD1	3 I	PZD17
STW1	Telegra	mmlänge	für die E	mpfangs I	l daten l									
ZSW1	Telegra	mmlänge	für die S	endedate	en I									

Bild 3-10 Telegramm mit freier Verschaltung und Länge

Abkürzung	Erläuterung	Abkürzung	Erläuterung
PZD	Prozessdatum	PKW	Parameterkanal
STW	Steuerwort	PIST_GLATT	Wirkleistungs-Istwert, geglättet
ZSW	Zustandswort	M_LIM	Grenze für Drehmoment
NSOLL_A	Drehzahl-Sollwert 16 Bit	FAULT_COD E	Störcode
NSOLL_B	Drehzahl-Sollwert 32 Bit	WARN_COD E	Warncode
NIST_A	Drehzahl-Istwert 16 Bit	MELD_NAMU R	Meldung nach VIK-NAMUR-Definition
NIST_B	Drehzahl-Istwert 32 Bit	G1_STW / G2_STW	Steuerwort für Geber 1 bzw. Geber 2
IAIST	Stromistwert	G1_ZSW / G2_ZSW	Zustandswort von Geber 1 bzw. Geber 2
IAIST_GLATT	Stromistwert, geglättet	G1_XIST1 / G2_XIST1	Lageistwert 1 von Geber 1 bzw. Geber 2
MIST_GLATT	Drehmoment-Istwert, geglättet	G1_XIST2 / G2_XIST2	Lageistwert 2 von Geber 1 bzw. Geber 2

3.1 PROFIdrive-Profil - Zyklische Kommunikation

Verschaltung der Prozessdaten

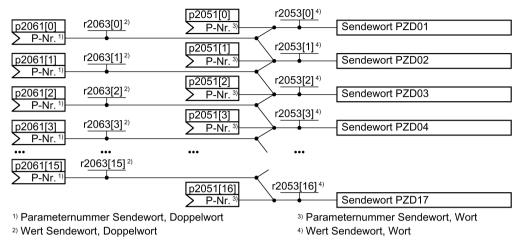


Bild 3-11 Verschaltung der Sendewörter

Bild 3-12 Verschaltung der Empfangswörter

Die Telegramme nutzen – mit Ausnahme von Telegramm 999 (freie Verschaltung) – die wortweise Übertragung der Sende- und Empfangsdaten (r2050/p2051).

Wenn Sie für Ihre Anwendung ein individuelles Telegramm benötigen (z. B. übertragen von Doppelwörtern), passen Sie eines der vordefinierten Telegramme über die Parameter p0922 und p2079 an. Details dazu finden Sie im Listenhandbuch in den Funktionsplänen 2420 und 2472.

3.1.1 Belegung der Steuer- und Zustandswörter

Die Belegung der Steuer- und Zustandswörter ist zum einen Teil durch Festlegungen im PROFIdrive-Profil, Version 4.2 für die Betriebsart "Drehzahlregelung" vorgegeben, der andere Teil ist herstellerspezifisch vorbelegt.

Eine detaillierte Darstellung der einzelnen Steuer- und Zustandswörter finden Sie in den folgenden Abschnitten.

Wenn Sie für Ihre Anwendung eine individuelle Belegung benötigen, passen Sie eines der vorhandenen Steuer- und Zustandswörter über die Parameter p0922 und p2079 an.

3.1.1.1 Steuer- und Zustandswort 1

Das Steuerwort 1 ist wie folgt vorbelegt:

- Telegramme 1, 2, 3 und 4:
 - Bit 0 ... 10 entsprechend PROFIdrive-Profil,
 - Bit 11 ... 15 herstellerspezifisch
- Telegramme 7 und 9:
 - Bit 0 ... 11 entsprechend PROFIdrive-Profil,
 - Bit 12 ... 15 herstellerspezifisch
- Telegramm 20 (VIK/NAMUR):
 - Bit 0 ... 11 entsprechend PROFIdrive-Profil
 - Bit 12 ... 14 reserviert
 - Bit 15 entsprechend PROFIdrive-Profil

Das Zustandswort 1 ist wie folgt vorbelegt:

- Telegramme 1, 2, 3 und 4:
 - Bit 0 ... 10 entsprechend PROFIdrive-Profil,
 - Bit 11 ... 15 herstellerspezifisch
- Telegramme 7 und 9:
 - Bit 0 ... 13 entsprechend PROFIdrive-Profil,
 - Bit 14 ... 15 herstellerspezifisch
- Telegramm 20 (VIK/NAMUR):
 - Bit 0 ... 11 entsprechend PROFIdrive-Profil
 - Bit 12 reserviert
 - Bit 13 ... 15 entsprechend PROFIdrive-Profil

Steuerwort 1 (STW1)

Bit	Bedeutung		Erläuterung	Signal-		
	Telegramm 20	Alle anderen Telegramme		Verschal- tung im Umrichter		
0	0 = AUS1	Der Motor bremst mit der Rücklaufzeit p1121 des Hochlaufgebers. Im Stillstand schaltet der Umrichter den Motor aus.		p0840[0] = r2090.0		
	0 → 1 = EIN		Der Umrichter geht in den Zustand "betriebs- bereit". Wenn zusätzlich Bit 3 = 1, schaltet der Umrichter den Motor ein.			
1	0 = AUS2		Motor sofort ausschalten, danach trudelt der Motor aus.	p0844[0] = r2090.1		
	1 = Kein AUS2		Das Einschalten des Motors (EIN-Befehl) ist möglich.			
2	0 = Schnellhalt (AUS3)		Schnelles Anhalten: der Motor bremst mit der AUS3-Rücklaufzeit p1135 bis zum Stillstand.	p0848[0] = r2090.2		
	1 = Kein Schnel	= Kein Schnellhalt (AUS3) Das Einschalten des Motors (EIN-Befehl) ist möglich.				
3	0 = Betrieb sperren					
	1 = Betrieb freig	eben	Motor einschalten (Impulsfreigabe möglich).	r2090.3		
4	0 = HLG sperren		Der Umrichter setzt seinen Hochlaufgeber- Ausgang sofort auf 0.	p1140[0] = r2090.4		
	1 = HLG nicht s	perren	Die Hochlaufgeber-Freigabe ist möglich.			
5	0 = HLG stoppe	stoppen Der Ausgang des Hochlaufgebers bleibt auf dem aktuellen Wert stehen.				
	1 = HLG freigeb	en	Der Ausgang des Hochlaufgebers folgt dem Sollwert.			
6	0 = Sollwert spe	rren	Der Umrichter bremst den Motor mit der Rücklaufzeit p1121des Hochlaufgebers.	p1142[0] = r2090.6		
	1 = Sollwert frei	geben	Motor beschleunigt mit der Hochlaufzeit p1120 auf den Sollwert.			
7	0 → 1 = Störung	en quittieren	Störung quittieren. Falls der ON-Befehl noch ansteht, geht der Umrichter in den Zustand "Einschaltsperre".	p2103[0] = r2090.7		
8, 9	Reserviert					
10	0 = Keine Führu	ing durch PLC	Umrichter ignoriert die Prozessdaten vom Feldbus.	p0854[0] = r2090.10		
	1 = Führung durch PLC		= Führung durch PLC Steuerung über Feldbus, Umrichter übernimmt die Prozessdaten vom Feldbus.			
11	1 = Richtungsur	nkehr	Sollwert im Umrichter invertieren.	p1113[0] = r2090.11		
12	Nicht verwendet	t				
13	1)	1 = MOP hö- her	Im Motorpotenziometer gespeicherten Sollwert erhöhen.	p1035[0] = r2090.13		

Bit	it Bedeutung		Erläuterung	Signal-	
	Telegramm 20	Alle anderen Telegramme		Verschal- tung im Umrichter	
14	1)	1 = MOP tiefer	Im Motorpotenziometer gespeicherten Sollwert verringern.	p1036[0] = r2090.14	
15	CDS Bit 0	Reserviert	Umschalten zwischen Einstellungen für unterschiedliche Bedienungsschnittstellen (Befehlsdatensätze).	p0810 = r2090.15	

Wenn Sie von einem anderen Telegramm auf das Telegramm 20 umschalten, bleibt die Belegung des vorherigen Telegramms erhalten.

Zustandswort 1 (ZSW1)

Bit	Bedeutung		Anmerkungen	Signal-
	Telegramm 20	Alle anderen Telegramme		Verschal- tung im Umrichter
0	1 = Einschaltbere	eit	Stromversorgung ist eingeschaltet, Elektronik ist initialisiert, Impulse sind gesperrt.	p2080[0] = r0899.0
1	1 = Betriebsbere	it	Motor ist eingeschaltet (EIN/AUS1 = 1), keine Störung ist aktiv. Mit dem Befehl "Betrieb freigeben" (STW1.3) schaltet der Umrichter den Motor ein.	p2080[1] = r0899.1
2	1 = Betrieb freige	egeben	Motor folgt Sollwert. Siehe Steuerwort 1, Bit 3.	p2080[2] = r0899.2
3	1 = Störung wirks	sam	Im Umrichter liegt eine Störung vor. Störung quittieren durch STW1.7.	p2080[3] = r2139.3
4	1 = AUS2 inaktiv		Zum Stillstand austrudeln ist nicht aktiv.	p2080[4] = r0899.4
5	1 = AUS3 inaktiv		Schnellhalt ist nicht aktiv.	p2080[5] = r0899.5
6	1 = Einschaltspe	rre aktiv	Motor einschalten ist erst möglich nach einem AUS1 und erneuten EIN.	p2080[6] = r0899.6
7	1 = Warnung wirl	ksam	Motor bleibt eingeschaltet; keine Quittierung notwendig.	p2080[7] = r2139.7
8	1 = Drehzahlabw halb des Toleran		Soll-/ Istwert-Abweichung innerhalb des Toleranzbereichs.	p2080[8] = r2197.7
9	1 = Führung gefo	ordert	Das Automatisierungssystem ist aufgefordert, die Steuerung des Umrichters zu übernehmen.	p2080[9] = r0899.9
10	1 = Vergleichsdrehzahl erreicht oder überschritten		Drehzahl ist größer oder gleich der entsprechenden Maximaldrehzahl.	p2080[10] = r2199.1
11	1 = Strom- oder Momentgrenze erreicht 1 = Moment- grenze erreicht		Vergleichswert für Strom oder Drehmoment ist erreicht oder überschritten.	p2080[11] = r0056.13 / r1407.7
12	1)	1 = Haltebrem- se offen	Signal zum Öffnen und Schließen einer Motorhaltebremse.	p2080[12] = r0899.12

3.1 PROFIdrive-Profil - Zyklische Kommunikation

Bit	Bedeutung		Anmerkungen	Signal-
	Telegramm 20	Alle anderen Telegramme		Verschal- tung im Umrichter
13	0 = Warnung Übe Motor	ertemperatur		p2080[13] = r2135.14
14	1 = Motor dreht r	echts	Umrichter-interner Istwert > 0.	p2080[14] =
	0 = Motor dreht li	nks	Umrichter-interner Istwert < 0.	r2197.3
15	1 = Anzeige CDS	0 = Warnung thermische Überlast Um- richter		p2080[15] = r0836.0 / r2135.15

Wenn Sie von einem anderen Telegramm auf das Telegramm 20 umschalten, bleibt die Belegung des vorherigen Telegramms erhalten.

3.1.1.2 Steuer- und Zustandswort 2

Das Steuerwort 2 ist wie folgt vorbelegt:

- Bit 0 ... 11 herstellerspezifisch
- Bit 12 ... 15 entsprechend PROFIdrive-Profil

Das Zustandswort 2 ist wie folgt vorbelegt:

- Bit 0 ... 11 herstellerspezifisch
- Bit 12 ... 15 entsprechend PROFIdrive-Profil

Steuerwort 2 (STW2)

Bit	Bedeutung		Signal-Verschaltung im Umrich-	
	Telegramme 2, 3 und 4	Telegramme 9, 110 und 111	ter	
0	1 = Antriebsdatensatz-Anwal	hl DDS Bit 0	p0820[0] = r2093.0	
1	1 = Antriebsdatensatz-Anwal	hl DDS Bit 1	p0821[0] = r2093.1	
26	Reserviert			
7	1 = Parkende Achse ist angewählt		p0897 = r2093.7	
8	1 = Fahren auf Festan- schlag aktiv	Reserviert	p1545[0] = r2093.8	
911	Reserviert			
12	1 = Master-Lebenszeichen Bit 0			
13	1 = Master-Lebenszeichen Bit 1			
14	1 = Master-Lebenszeichen Bit 3		p2045 = r2050[3]	
15	1 = Master-Lebenszeichen Bit 4			

Zustandswort 2 (ZSW2)

Bit	Bedeutung	Signal-Verschaltung im Umrichter
0	1 = Antriebsdatensatz DDS wirksam Bit 0	p2081[0] = r0051.0
1	1 = Antriebsdatensatz DDS wirksam Bit 1	p2081[1] = r0051.1
24	Reserviert	
5	1 = Warnungsklasse Bit 0	p2081[5] = r2139.11
6	1 = Warnungsklasse Bit 1	p2081[6] = r2139.12
7	Reserviert	
8	1 = Fahren auf Festanschlag aktiv	p2081[8] = r1406.8
9	Reserviert	
10	1 = Impulse freigegeben	p2081[10] = r0899.11
11	Reserviert	
12	Slave-Lebenszeichen Bit 0	
13	Slave-Lebenszeichen Bit 1	
14	Slave-Lebenszeichen Bit 2	Intern verschaltet
15	Slave-Lebenszeichen Bit 3	

3.1 PROFIdrive-Profil - Zyklische Kommunikation

3.1.1.3 Steuer- und Zustandswort 3

Das Steuerwort 3 ist wie folgt vorbelegt:

• Bit 0 ... 15 herstellerspezifisch

Das Zustandswort 3 ist wie folgt vorbelegt:

• Bit 0 ... 15 herstellerspezifisch

Steuerwort 3 (STW3)

Bit	Bedeutung	Erläuterung	Signal-Verschaltung
	Telegramm 350		im Umrichter 1)
0	1 = Festsollwert Bit 0	Auswahl von bis zu 16 unter-	p1020[0] = r2093.0
1	1 = Festsollwert Bit 1	schiedlichen Festsollwerten.	p1021[0] = r2093.1
2	1 = Festsollwert Bit 2		p1022[0] = r2093.2
3	1 = Festsollwert Bit 3		p1023[0] = r2093.3
4	1 = DDS Anwahl Bit 0	Umschalten zwischen Einstel-	p0820 = r2093.4
5	1 = DDS Anwahl Bit 1	lungen für unterschiedliche Motoren (Antriebsdatensätze).	p0821 = r2093.5
6	Nicht verwendet		
7	Nicht verwendet		
8	1 = Technologieregler-Freigabe		p2200[0] = r2093.8
9	1 = Gleichstrombremsung Freigabe		p1230[0] = r2093.9
10	Nicht verwendet		
11	1 = Statik Freigabe	Statik des Drehzahlreglers freigeben oder sperren.	p1492[0] = r2093.11
12	1 = Drehmomentregelung aktiv	Umschalten der Regelungsart	p1501[0] = r2093.12
	0 = Drehzahlregelung aktiv	bei Vektorregelung.	
13	1 = Keine externe Störung		p2106[0] = r2093.13
	0 = Externe Störung ist aktiv (F07860)		
14	Nicht verwendet		
15	1 = CDS Bit 1	Umschalten zwischen Einstellungen für unterschiedliche Bedienungsschnittstellen (Befehlsdatensätze).	p0811[0] = r2093.15

Wenn Sie vom Telegramm 350 auf ein anderes umschalten, setzt der Umrichter alle Verschaltungen p1020, ... auf "0". Ausnahme: p2106 = 1.

Zustandswort 3 (ZSW3)

Bit	Bedeutung	Beschreibung	Signal- Verschaltung im Umrichter
0	1 = Gleichstrombremsung aktiv		p2051[3] = r0053
1	1 = n_ist > p1226	Betrag der aktuellen Drehzahl > Stillstandserkennung	
2	1 = n_ist > p1080	Betrag der aktuellen Drehzahl > Minimaldrehzahl	
3	1 = i_ist ≧ p2170	Aktueller Strom ≥ Stromschwellwert	
4	1 = n_ist > p2155	Betrag der aktuellen Drehzahl > Drehzahlschwellwert 2	
5	1 = n_ist ≦ p2155	Betrag der aktuellen Drehzahl < Drehzahlschwellwert 2	
6	1 = n_ist ≧ r1119	Drehzahl-Sollwert erreicht	
7	1 = Zwischenkreisspannung ≦ p2172	Aktuelle Zwischenkreisspannung ≦ Schwellwert	
8	1 = Zwischenkreisspannung > p2172	Aktuelle Zwischenkreisspannung > Schwellwert	
9	1 = Hoch- oder Rücklauf beendet	Hochlaufgeber ist nicht aktiv	
10	1 = Technologieregler-Ausgang an unterer Grenze	Ausgang Technologieregler ≦ p2292	
11	1 = Technologieregler-Ausgang an oberer Grenze	Ausgang Technologieregler > p2291	
12	Nicht verwendet		
13	Nicht verwendet		
14	Nicht verwendet		
15	Nicht verwendet		

3.1.2 NAMUR Meldewort

Störungswort nach VIK-NAMUR-Definition (MELD_NAMUR)

Tabelle 3- 1 Störungswort nach VIK-NAMUR-Definition und Verschaltung mit Parametern im Umrichter

Bit	Bedeutung	P-Nr.
0	1 = Control Unit meldet eine Störung	p2051[5] = r3113
1	1 = Netzfehler: Phasenausfall oder unzulässige Spannung	
2	1 = Zwischenkreisüberspannung	
3	1 = Störung des Power Module, z. B. Überstrom oder Übertemperatur	
4	1 = Übertemperatur des Umrichters	
5	1 = Erdschluss/Phasenschluss in der Motorleitung oder im Motor	
6	1 = Überlast Motor	
7	1 = Kommunikation zur überlagerten Steuerung gestört	
8	1 = Fehler in einem sicheren Überwachungskanal	
10	1 = Störung der umrichter-internen Kommunikation	
11	1 = Störung Netz	
15	1 = Sonstige Störung	

3.1.3 Steuer- und Zustandswort Geber

Die Telegramme 3 und 4 erlauben der übergeordneten Steuerung einen direkten Zugriff auf den Geber.

Der direkte Zugriff ist notwendig, wenn die übergeordnete Steuerung die Lageregelung für den Antrieb übernimmt.

Wenn Sie die Lageregelung "Einfachpositionierer" im Umrichter freigeben, sind die Telegramme 3 und 4 nicht anwählbar und der Umrichter übernimmt die Steuerung des Gebers.

Steuerwort Geber (G1_STW und G2_STW)

Bit	Bedeutung	~		Signalverschaltung im Umrichter
		Bit 7 = 0	Bit 7 = 1	
0	Funktion 1	1 = Referenznocken 1 suchen mit positiver Startrichtung	1 = Fliegendes Referenzie- ren auf die steigende Flanke des Referenznockens 1 anfordern	Telegramm 3: Geber 1: p0480[0] = r2050[4]
1	Funktion 2	1 = Referenznocken 1 suchen mit negativer Startrichtung	1 = Fliegendes Referenzie- ren auf die fallende Flanke des Referenznockens 1 anfordern	Telegramm 4: Geber 1: p0480[0] = r2050[4]
2	Funktion 3	1 = Referenznocken 2 suchen mit positiver Startrichtung	1 = Fliegendes Referenzie- ren auf die steigende Flanke des Referenznockens 2 anfordern	Geber 2: p0480[1] = p2050[9] Telegramm 102:
3	Funktion 4	1 = Referenznocken 2 suchen mit negativer Startrichtung	1 = Fliegendes Referenzie- ren auf die fallende Flanke des Referenznockens 2 anfordern	Geber 1: p0480[0] = r2050[5] Telegramm 103:
4	Kommando Bit 0	1 = Über Bit 0 3 ange	eforderte Funktion aktivieren	Geber 1:
5	Kommando Bit 1	1 = Über Bit 0 3 ange	eforderten Wert lesen	p0480[0] = r2050[5]
6	Kommando Bit 2	Reserviert		Geber 2:
7	Modus	1 = Fliegendes Referenzieren 0 = Referenznocken suchen		p0480[1] = p2050[10]
8	Reserviert			
 12				
13	Absolutwert zyklisch	1 = Anforderung für die zyklische Übertragung des Lageistwerts in G1_XIST2 bzw. G2_XIST2		
14	Parken	1 = Anforderung, um den Geber zu parken		
15	Quittieren	0 → 1 = Störung des Ge	bers quittieren	

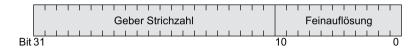
Zustandswort Geber (G1_ZSW und G2_ZSW)

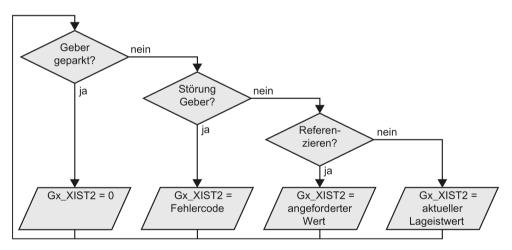
Bit	Bedeutung	Erläuterung		Signalverschaltung im Umrichter
		Bit 7 = 0	Bit 7 = 1	
0	Funktion 1	1 = Suche nach Referenznocken 1 ist aktiv	1 = Fliegendes Referenzieren auf die steigende Flanke des Refe- renznockens 1 ist aktiv	Telegramm 3: Geber 1: p2051[4] = r0481[0]
1	Funktion 2	1 = Suche nach Referenznocken 1 ist aktiv	1 = Fliegendes Referenzieren auf die fallende Flanke des Referenz- nockens 1 ist aktiv	Telegramm 4:
2	Funktion 3	1 = Suche nach Referenznocken 2 ist aktiv	1 = Fliegendes Referenzieren auf die steigende Flanke des Refe- renznockens 2 ist aktiv	Geber 1: p2051[4] = r0481[0]Geber 2: p2051[9] = r0481[1]
3	Funktion 4	1 = Suche nach Referenznocken 2 ist aktiv	1 = Fliegendes Referenzieren auf die fallende Flanke des Referenz- nockens 2 ist aktiv	Telegramm 102:
4	Status Wert 1	1 = Lageistwert ist auf Referenzno- cken 1	1 = Fliegendes Referenzieren auf die steigende Flanke des Refe- renznockens 1 ist abgeschlossen	Geber 1: p2051[5] = r0481[0]
5	Status Wert 2	1 = Lageistwert ist auf Referenzno- cken 1	1 = Fliegendes Referenzieren auf die fallende Flanke des Referenz- nockens 1 ist abgeschlossen	Telegramm 103: Geber 1: p2051[5] = r0481[0]
6	Status Wert 3	1 = Lageistwert ist auf Referenzno- cken 2	1 = Fliegendes Referenzieren auf die steigende Flanke des Refe- renznockens 2 ist abgeschlossen	Geber 2: p2051[10] = r0481[0]
7	Status Wert 4	1 = Lageistwert ist auf Referenzno- cken 2	1 = Fliegendes Referenzieren auf die fallende Flanke des Referenz- nockens 2 ist abgeschlossen	
8	Referenzno- cken 1		1 = Referenznocken 1 liefert High-Signal 0 = Referenznocken 1 liefert Low-Signal	
9	Referenzno- cken 2	1 = Referenznocken 2 liefert High-Signal 0 = Referenznocken 2 liefert Low-Signal		
10	Reserviert			
11	Quittieren	1 = Geberfehler quittieren ist aktiv		
12	Reserviert		-	
13	Absolutwert zyklisch	1 = Der Lageistwert steht in G1_XIST2 bzw. G2_XIST2.		
14	Parken	1 = Der Geber ist geparkt		
15	Störung	1 = Der Geber zeigt	seine aktuelle Störung in r0483	

3.1.4 Lageistwert des Gebers

G1_XIST1 und G2_XIST1

In der Werkseinstellung überträgt der Umrichter den Lageistwert des Gebers mit 11 Bit Feinauflösung zur übergeordneten Steuerung.




Bild 3-13 G1_XIST1 und G2_XIST1

Das übertragene Gebersignal hat folgende Eigenschaften:

- Nach dem Einschalten der Versorgungsspannung des Umrichters ist das Gebersignal = 0.
- Die übergeordnete Steuerung muss einen Zahlenüberlauf des Gebersignals beherrschen.

G1_XIST2 und G2_XIST2

Der Umrichter überträgt in G1_XIST2 bzw. G2_XIST2 unterschiedliche Werte zur übergeordneten Steuerung:

Geber x geparkt $Gx_ZSW.14 = 1$ Störung Geber x $Gx_ZSW.15 = 1$

Referenzieren Geber x Gx_ZSW.4 = 1 oder Gx_ZSW.5 = 1 oder Gx_ZSW.6 = 1 oder

 $Gx_ZSW.7 = 1$

Bild 3-14 G1_XIST2 und G2_XIST2

3.1 PROFIdrive-Profil - Zyklische Kommunikation

Lagewerte überträgt der Umrichter im gleichen Format (Geber Strichzahl und Feinauflösung) wie G1_XIST1 und G2_XIST1.

Tabelle 3-2 Fehlercode

Nr.	Erläuterung	Mögliche Ursache
1	Geberfehler	Ein oder mehrere anstehende Geberfehler.
		Beachten Sie die Meldung des Umrichters.
2	Nullmarkenüberwachung	
3	Geber parken abgebrochen	Parken war bereits angefordert.
4	Referenzpunktfahrt abgebrochen	Geber besitzt keine Nullmarke (Referenzmarke).
		Referenzmarke 2, 3 oder 4 wurde angefordert.
		Während der Referenzpunktfahrt wurde auf "Fliegendes Referenzieren" umgeschaltet.
		Während Referenzmarkensuche wird Komman- do "Wert x lesen" angefordert.
		Inkonsistenter Positionsmesswert bei abstands- kodierten Referenzmarken.
5	Referenzwert abholen abgebrochen	Mehr als vier Werte wurden angefordert.
		Kein Wert ist angefordert.
		Angeforderter Wert ist nicht vorhanden.
6	Fliegendes Referenzieren abgebro-	Referenznocken ist nicht konfiguriert
	chen	Während dem "Fliegenden Referenzieren" wurde auf die Referenzpunktfahrt umgeschaltet.
		Während dem "Fliegenden Referenzieren" kam die Anforderung "Wert x lesen".
7	Messwert abholen abgebrochen	Mehr als ein Wert wurde angefordert.
		Kein Wert ist angefordert.
		Angeforderter Wert ist nicht vorhanden.
		Geber ist geparkt.
8	Übertragung des Lageistwertes abge-	Kein Absolutwertgeber vorhanden.
	brochen	Alarmbit im Absolutwertprotokoll gesetzt.
3841	Geber unterstützt die Funktion nicht	

3.1.5 Telegramme erweitern und Signal-Verschaltung ändern

Überblick

Wenn Sie ein Telegramm gewählt haben, verschaltet der Umrichter die entsprechenden Signale mit der Feldbus-Schnittstelle. Diese Verschaltungen sind normalerweise gegen Änderung gesperrt. Bei entsprechender Einstellung im Umrichter lässt sich das Telegramm erweitern oder sogar frei verschalten.

Telegramm erweitern

Vorgehensweise

- 1. Setzen Sie p0922 = 999.
- 2. Setzen Sie p2079 auf den Wert des entsprechenden Telegramms.

Die im Telegramm enthaltenen Verschaltungen sind gesperrt.

3. Erweitern Sie das Telegramm, indem Sie zusätzliche Signale "anhängen":

Verschalten Sie weitere PZD-Sendewörter und PZD-Empfangswörter über die Parameter r2050 und p2051 mit Signalen Ihrer Wahl.

Sie haben das Telegramm erweitert. ☐

Signale im Telegramm frei verschalten

Vorgehensweise

- 1. Setzen Sie p0922 = 999.
- 2. Setzen Sie p2079 = 999.

Die im Telegramm enthaltenen Verschaltungen sind frei gegeben.

3. Verschalten Sie weitere PZD-Sendewörter und PZD-Empfangswörter über die Parameter r2050 und p2051 mit Signalen Ihrer Wahl.

Sie haben die im Telegramm übertragenen Signale frei verschaltet. □

Parameter

Parameter	Beschreibung		
p0922	PROFIdrive Telegrammauswahl		
	999: Freie Telegrammprojektierung		
p2079	PROFIdrive PZD Telegrammauswahl erweitert		
	Wenn Sie die Funktion "Einfachpositionierer" im Umrichter nicht freigegeben haben, gelten die folgenden Werte:		
	1: Standard Telegramm 1, PZD-2/2 2: Standard Telegramm 2, PZD-4/4 3: Standard Telegramm 3, PZD-5/9 4: Standard Telegramm 4, PZD-6/14 20: Standard Telegramm 20, PZD-2/6 350: SIEMENS Telegramm 350, PZD-4/4 352: SIEMENS Telegramm 352, PZD-6/6 353: SIEMENS Telegramm 353, PZD-2/2, PKW-4/4 354: SIEMENS Telegramm 354, PZD-6/6, PKW-4/4 999: Freie Telegrammprojektierung		
	Wenn Sie die Funktion "Einfachpositionierer" im Umrichter freigegeben haben, gelten die folgenden Werte:		
	7: Standard Telegramm 7, PZD-2/2 9: Standard Telegramm 9, PZD-10/5 110: SIEMENS Telegramm 110, PZD-12/7 111: SIEMENS Telegramm 111, PZD-12/12 999: Freie Telegrammprojektierung		
r2050[011]	PROFIdrive PZD empfangen Wort Empfangene PZD (Sollwerte) im Wort-Format		
p2051[016]	PROFIdrive PZD senden Wort Gesendete PZD (Istwerte) im Wort-Format		

Weitere Informationen zu den Empfangs- und Sendeworten finden Sie in den Funktionsplänen 2468 und 2470 des Listenhandbuchs.

3.1.6 Datenstruktur des Parameterkanals

Aufbau des Parameterkanals

Der Parameterkanal umfasst vier Worte. 1. und 2. Wort übertragen Parameternummer, Index und die Art des Auftrags (lesen oder schreiben). Das 3. und 4. Wort enthält die Parameterinhalte. Parameterinhalte können 16-Bit-Werte sein (z. B. Baudrate) oder 32-Bit-Werte (z. B. CO-Parameter).

Bit 11 im 1. Wort ist reserviert und immer mit 0 belegt.

Parameterkanal				
PKE (1. Wort)	IND (2	. Wort)	PWE (3. ui	nd 4. Wort)
1512:11: 10 0	15 8	7 0	15 0	15 0
AK S PNU	Subindex	Seitenindex	PWE 1	PWE 2
P				
M				

Anwendungsbeispiele zum Parameterkanal finden Sie am Ende dieses Abschnitts.

AK: Anforderungs- und Antwortkennungen

Die Bits 12 ... 15 des 1. Wortes des Parameterkanals enthalten die Anforderungs- und Antwortkennung AK.

Tabelle 3-3 Anforderungskennungen Steuerung → Umrichter

AK	Beschreibung		kennung
		positiv	negativ
0	keine Anforderung		7/8
1	Anforderung Parameterwert	1/2	7/8
2	Änderung Parameterwert (Wort)		7/8
3	Änderung Parameterwert (Doppelwort)		7/8
4	Anforderung beschreibendes Element 1)		7 / 8
6 ²⁾	Anforderung Parameterwert (Feld) 1)		7 / 8
7 2)	Änderung Parameterwert (Feld, Wort) 1)		7 / 8
8 2)	Änderung Parameterwert (Feld, Doppelwort) 1)		7/8
9	Anforderung Anzahl der Feldelemente	6	7/8

¹⁾ Das gewünschte Element des Parameters ist in IND (2. Wort) spezifiziert.

²⁾ Folgende Anforderungskennungen sind identisch: $1 \equiv 6$, $2 \equiv 7$ $3 \equiv 8$. Wir empfehlen Kennungen 6, 7 und 8 zu verwenden.

3.1 PROFIdrive-Profil - Zyklische Kommunikation

Tabelle 3-4 Antwortkennungen Umrichter → Steuerung

AK	Beschreibung
0	keine Antwort
1	Übertrage Parameterwert (Wort)
2	Übertrage Parameterwert (Doppelwort)
3	Übertrage beschreibendes Element 1)
4	Übertrage Parameterwert (Feld, Wort) 2)
5	Übertrage Parameterwert (Feld, Doppelwort) 2)
6	Übertrage Anzahl der Feldelemente
7	Umrichter kann Anforderung nicht bearbeiten. Der Umrichter sendet im höchsten Wort des Parameterkanals eine Fehlernummer an die Steuerung, siehe folgende Tabelle.
8	Kein Mastersteuerungs-Status / keine Berechtigung zur Parameteränderung der Parameterkanal-Schnittstelle

¹⁾ Das gewünschte Element des Parameters ist in IND (2. Wort) spezifiziert.

²⁾ Das gewünschte Element des indizierten Parameters ist in IND (2. Wort) spezifiziert.

Tabelle 3-5 Fehlernummern bei Antwortkennung 7

Nr.	Beschreibung
00 hex	Unzulässige Parameternummer (Zugriff auf nicht vorhandenen Parameter.)
01 hex	Parameterwert nicht änderbar (Änderungsauftrag für einen nicht änderbaren Parameterwert.)
02 hex	Untere oder obere Wertgrenze überschritten (Änderungsauftrag mit Wert außerhalb der Wertgrenzen.)
03 hex	Fehlerhafter Subindex (Zugriff auf nicht vorhandenen Subindex)
04 hex	Kein Array (Zugriff mit Subindex auf nichtindizierten Parameter)
05 hex	Falscher Datentyp (Änderungsauftrag mit Wert, der nicht zum Datentyp des Parameters passt)
06 hex	Kein Setzen erlaubt, sondern nur Zurücksetzen (Änderungsauftrag mit Wert ungleich 0 ohne Erlaubnis)
07 hex	Beschreibungselement nicht änderbar (Änderungsauftrag auf nicht änderbares Beschreibungselement.fehlerwert)
0B hex	Keine Bedienhoheit (Änderungsauftrag bei fehlender Bedienhoheit, siehe auch p0927)
0C hex	Schlüsselwort fehlt
11 hex	Auftrag wegen Betriebszustand nicht ausführbar (Zugriff ist aus nicht näher spezifizierten temporären Gründen nicht möglich)
14 hex	Wert unzulässig (Änderungsauftrag mit Wert, der zwar innerhalb der Grenzen liegt, aber aus anderen dauerhaften Gründen unzulässig ist, d. h. ein Parameter mit definierten Einzelwerten)
65 hex	Parameternummer derzeit deaktiviert (Abhängig vom Betriebszustand des Umrichters)
66 hex	Kanalbreite nicht ausreichend (Kommunikationskanal zu klein für Antwort)
68 hex	Unzulässiger Parameterwert (Der Parameter lässt nur bestimmte Werte zu)
6A hex	Anforderung nicht enthalten / Aufgabe wird nicht unterstützt. (Die gültigen Anforderungskennungen finden Sie in der Tabelle "Anforderungskennungen Steuerung → Umrichter")
6B hex	Kein Änderungszugriff bei freigegebenem Regler. (Der Betriebszustand des Umrichters verhindert eine Parameteränderung)
86 hex	Schreibzugriff nur bei Inbetriebnahme (p0010 = 15) (Der Betriebszustand des Umrichters verhindert eine Parameteränderung)
87 hex	Know-how-Schutz aktiv, Zugriff gesperrt
C8 hex	Änderungsauftrag unterhalb aktuell gültiger Grenze (Änderungsauftrag auf einen Wert, der zwar innerhalb der "absoluten" Grenzen liegt, der aber unterhalb der aktuell gültigen unteren Grenze liegt)
C9 hex	Änderungsauftrag oberhalb aktuell gültiger Grenze (Beispiel: Ein Parameterwert ist zu groß für die Umrichterleistung)
CC hex	Änderungsauftrag nicht erlaubt (Ändern nicht erlaubt, da Zugriffsschlüssel nicht vorhanden)

3.1 PROFIdrive-Profil - Zyklische Kommunikation

PNU (Parameternummer) und Seitenindex

Die Parameternummer steht im Wert PNU im 1. Wort des Parameterkanals (PKE).

Der Seitenindex steht im 2. Wort des Parameterkanals (IND Bit 7 ... 0).

Parameternummer	PNU	Seitenindex
0000 1999	0000 1999	0 hex
2000 3999	0000 1999	80 hex
6000 7999	0000 1999	90 hex
8000 9999	0000 1999	20 hex
10000 11999	0000 1999	A0 hex
20000 21999	0000 1999	50 hex
30000 31999	0000 1999	F0 hex
60000 61999	0000 1999	74 hex

Subindex

Bei indizierten Parametern steht der Parameterindex als Hex-Wert im Subindex (IND Bit 15 ... 8).

PWE: Parameterwert oder Konnektor

In PWE dürfen Parameterwerte oder Konnektoren stehen.

Tabelle 3- 6 Parameterwert oder Konnektor

	PWE 1	PWE 2		
Parameterwert	Bit 15 0	Bit 15 8	Bit 7 0	
	0 0		8-Bit-Wert	
	0	16	-Bit-Wert	
	32-Bit	t-Wert		
Konnektor	Bit 15 0	Bit 15 10	Bit 9 0	
	Nummer des Konnektors	3F hex	Index oder Bitfeld- Nummer des Konnek- tors	

3.1.6.1 Anwendungsbeispiele

Leseanforderung: Seriennummer des Power Modules auslesen (p7841[2])

Um den Wert des indizierten Parameters p7841 zu erhalten, müssen Sie das Telegramm des Parameterkanals mit folgenden Daten füllen:

- PKE, Bit 12 ... 15 (AK): = 6 (Anforderung Parameterwert (Feld))
- PKE, Bit 0 ... 10 (PNU): = 1841 (Parameternummer ohne Offset)
 Parameternummer = PNU + Offset (Seitenindex)
 (7841 = 1841 + 6000)
- IND, Bit 8 ... 15 (Subindex): = 2 (Index des Parameters)
- Da Sie den Parameterwert lesen wollen, sind die Worte 3 und 4 im Parameterkanal für die Anforderung des Parameterwertes belanglos und z. B. mit dem Wert 0 zu belegen.

	Parameterkanal					
	PKE, 1. Wort IND, 2. Wort PWE1 - high, 3. Wort PWE2 - low, 4. Wort					
1512 11	10 0	15 8	7 0	15 0	15 10	9 0
AK	Parameternummer	Subindex	Seitenindex	Parameterwert	Drive Object	Index
0 1 1 0 0	1111001110001	00000010	10010000	0000000000000000000	000000	00000000000

Bild 3-15 Telegramm für Leseanforderung von p7841[2]

Schreibauftrag: Wiedereinschaltmodus ändern (p1210)

Der Wiedereinschaltmodus ist in der Werkseinstellung gesperrt (p1210 = 0). Um die Wiedereinschaltautomatik mit "Quittieren aller Störungen und Wiedereinschalten bei EIN-Befehl" zu aktivieren, muss p1210 = 26 eingestellt werden:

- PKE, Bit 12 ... 15 (AK): = 7 (Änderung Parameterwert (Feld, Wort))
- PKE, Bit 0 ... 10 (PNU): = 4BA hex (1210 = 4BA hex, kein Offset, da 1210 < 1999)
- IND, Bit 8 ... 15 (Subindex): = 0 hex (Parameter ist nicht indiziert)
- IND, Bit 0 ... 7 (Seitenindex): = 0 hex (Offset 0 entspricht 0 hex)
- PWE1, Bit 0 ... 15: = 0 hex
- PWE2, Bit 0 ... 15: = 1A hex (26 = 1A hex)

	Parameterkanal					
	PKE, 1. Wort IND, 2. Wort PWE1 - high, 3. Wort PWE2 - low, 4. Wort					
1512	11	10 0	15 8	7 0	15 0	15 0
AK		Parameternummer	Subindex	Seitenindex	Parameterwert (Bit 16 31)	Parameterwert (Bit 0 15)
0 1 1 1	0	10010111010	00000000	00000000	0000000000000000000	00000000000011010

Bild 3-16 Telegramm, um die Wiedereinschaltautomatik mit p1210 = 26 zu aktivieren

3.1 PROFIdrive-Profil - Zyklische Kommunikation

Schreibauftrag: Digitaleingang 2 mit der Funktion EIN/AUS1 belegen (p0840[1] = 722.2)

Um den Digitaleingang 2 mit EIN/AUS1 zu verknüpfen, müssen Sie den Parameter p0840[1] (Quelle EIN/AUS1) mit dem Wert 722.2 (DI 2) belegen. Dazu müssen Sie das Telegramm des Parameterkanals wie folgt füllen:

- PKE, Bit 12 ... 15 (AK): = 7 hex (Änderung Parameterwert (Feld, Wort))
- PKE, Bit 0 ... 10 (PNU): = 348 hex (840 = 348 hex, kein Offset, da 840 < 1999)
- IND, Bit 8 ... 15 (Subindex): = 1 hex (CDS1 = Index1)
- IND, Bit 0 ... 7 (Seitenindex): = 0 hex (Offset 0 ≜ 0 hex)
- **PWE1, Bit 0 ... 15**: = **2D2 hex** (722 = 2D2 hex)
- PWE2, Bit 10 ... 15: = 3F hex (Drive Object bei SINAMICS G120 immer 63 = 3f hex)
- PWE2, Bit 0 ... 9: = 2 hex (Index des Parameters (DI 2 = 2))

	Parameterkanal							
ĺ	PKE, 1. Wort IND, 2. Wort PWE1 - high, 3. Wort PWE2 - low, 4. Wort							
ĺ	1512 1	11	10 0	15 8	7 0	15 0	15 10	9 0
ĺ	AK		Parameternummer	Subindex	Seitenindex	Parameterwert	Drive Object	Index
ı	0 1 1 1 0	0	0 1 1 0 1 0 0 1 0 0	00000001	00000000	0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0	1 1 1 1 1 1	00000000010

Bild 3-17 Telegramm, um den DI 2 mit EIN/AUS1 zu belegen

Anwendungsbeispiel "Parameter lesen und schreiben"

Weitere Informationen finden Sie im Internet:

Applikationsbeispiele (https://support.industry.siemens.com/cs/ww/de/view/29157692)

3.1.7 Querverkehr

Der "Querverkehr" wird auch "Slave-Slave-Kommunikation" oder "Data Exchange Broadcast" genannt. Hierüber tauschen Slaves Daten ohne direkte Beteiligung des Masters aus.

Beispiel: Ein Umrichter verwendet den Drehzahl-Istwert eines anderen Umrichters als seinen Drehzahl-Sollwert.

Definitionen

- Publisher: Slave, der die Daten für den Querverkehr sendet.
- Subscriber: Slave, der die Daten aus dem Querverkehr vom Publisher erhält.
- Links und Abgriffe definieren die Daten, die für den Querverkehr genutzt werden.

Einschränkungen

- Querverkehr ist in der aktuellen Firmware-Version nur bei Umrichtern mit PROFIBUS-Kommunikation möglich.
- pro Antrieb sind maximal 12 PZD zulässig
- Von einem Subscriber sind maximal vier Links zu einem oder mehreren Publishern möglich.

Querverkehr konfigurieren

Vorgehensweise

- 1. Legen Sie In der Steuerung fest:
 - Welche Umrichter arbeiten als Publisher (Sender) oder Subscriber (Empfänger)?
 - Welche Daten oder Datenbereiche (Abgriffe) nutzen Sie für den Querverkehr?
- 2. Legen Sie Im Umrichter fest:

Wie verarbeitet der Subscriber die im Querverkehr übertragenen Daten?

Damit habe Sie den Querverkehr konfiguriert.

3.2 PROFIdrive-Profil - Azyklische Kommunikation

Der Umrichter unterstützt folgende Arten der azyklischen Kommunikation:

• Für PROFIBUS:

azyklische Kommunikation über Datensatz 47

 Für PROFINET: azyklische Kommunikation über B02E hex und B02F hex

Die maximale Datenlänge pro Auftrag beträgt 240 Byte.

Hinweis

Kursiv geschriebene Werte

Kursiv geschriebene Werte in den folgenden Tabellen bedeuten, dass Sie diese Werte auftragsspezifisch anpassen müssen.

Parameterwerte lesen

Tabelle 3-7 Auftrag zum Lesen von Parametern

Datenblock	Byte n	Byte n + 1	n
Header	Referenz 00 hex FF hex	01 hex: Leseauftrag	0
	01 hex (ID des Drive Objects, bei G120 immer = 1)	Anzahl der Parameter (m)	2
Adresse Parameter 1	Attribut 10 hex: Wert des Parameters 20 hex: Beschreibung des Parameters Parameternummer 0001 hex FFFF hex	Anzahl der Indizes 00 hex EA hex (Bei Parametern ohne Index: 00 hex)	6
	Nummer des 1. Index 0000 hex FFFF hex (Bei Parametern ohne Index: 0000 hex)		8
Adresse Parameter 2			
Adresse Parameter m			

Tabelle 3-8 Antwort des Umrichters auf einen Leseauftrag

Datenblock	Byte n	Byte n + 1	n
Header	Referenz (identisch zu Leseauftrag)	01 hex: Umrichter hat Leseauftrag ausgeführt. 81 hex: Umrichter konnte Leseauftrag nicht vollständig ausführen.	0
	01 hex (ID des Drive Objects, bei G120 immer = 1)	Anzahl der Parameter (m) (identisch zu Leseauftrag)	2
Werte Parameter 1	Format 02 hex: Integer8 03 hex: Integer16 04 hex: Integer32 05 hex: Unsigned8 06 hex: Unsigned16 07 hex: Unsigned32 08 hex: FloatingPoint 0A hex: OctetString 0D hex: TimeDifference 34 hex: TimeOfDay without date indication 35 hex: TimeDifference with date indication 36 hex: TimeDifference without date indication 41 hex: Byte 42 hex: Word 43 hex: Double word 44 hex: Error	Anzahl der Indexwerte oder - bei negativer Antwort - Anzahl der Fehlerwerte	4
	Wert des 1. Index oder - bei negativer Antwort - Die Fehlerwerte finden Sie in der Tabelle am E		6
Werte Parameter 2			
Werte Parameter m			

3.2 PROFIdrive-Profil - Azyklische Kommunikation

Parameterwerte ändern

Tabelle 3-9 Auftrag zum Ändern von Parametern

Datenblock	Byte n	Byte n + 1	n		
Header	Referenz 00 hex FF hex	02 hex: Änderungsauftrag	0		
	01 hex (ID des Drive Objects, bei G120 immer = 1)	Anzahl der Parameter (m) 01 hex 27 hex	2		
Adresse Parameter 1	10 hex: Wert des Parameters	Anzahl der Indizes 00 hex EA hex (00 hex und 01 hex sind gleichbedeutend)	4		
	Parameternummer 0001 hex FFFF hex				
	Nummer des 1. Index 0001 hex FFFF hex				
Adresse Parameter 2					
Adresse Parameter m					
Werte Parameter 1	Format 02 hex: Integer 8 03 hex: Integer 16 04 hex: Integer 32 05 hex: Unsigned 8 06 hex: Unsigned 16 07 hex: Unsigned 32 08 hex: Floating Point 0A hex: Octet String 0D hex: Time Difference 34 hex: TimeOfDay without date indication 35 hex: TimeDifference with date indication 41 hex: Byte 42 hex: Word 43 hex: Double word Wert des 1. Index	Anzahl der Indexwerte 00 hex EA hex			
Werte Parameter 2					
Werte Parameter m					

Tabelle 3- 10 Antwort, wenn der Umrichter den Änderungsauftrag ausgeführt hat

Datenblock	Byte n	Byte n + 1	n
Header	Referenz (identisch zu Änderungsauftrag)	02 hex (Änderungsauftrag erfolgreich)	0
	01 hex (ID des Drive Objects, bei G120 im-	Anzahl Parameter (identisch zu Änderungs-	2
	mer = 1)	auftrag)	

Tabelle 3- 11 Antwort, wenn der Umrichter den Änderungsauftrag nicht vollständig ausgeführt hat

Datenblock	Byte n	Byte n + 1	n
Header	Referenz (identisch zu Änderungsauftrag)	82 hex: (Umrichter konnte Schreibauftrag nicht vollständig ausführen)	0
	01 hex (ID des Drive Objects, bei G120 immer = 1)	Anzahl Parameter (identisch zu Änderungs- auftrag)	2
Werte Parameter 1	Format 40 hex: Zero (Änderungsauftrag für diesen Datenblock ausgeführt) 44 hex: Error (Änderungsauftrag für diesen Datenblock nicht ausgeführt)	Anzahl Fehlerwerte 00 hex 01 hexoder 02 hex	4
	Nur bei "Error" - Fehlerwert 1 Die Fehlerwerte finden Sie in der Tabelle am E	nde dieses Abschnitts.	6
	Nur bei "Error" - Fehlerwert 2 Der Fehlerwert 2 ist entweder Null oder er enth Fehler aufgetreten ist.	ält die Nummer des ersten Index, bei dem der	8
Werte Parameter 2			
			Ī
Werte Parameter m			

Fehlerwerte

Tabelle 3- 12 Fehlerwerte in der Parameterantwort

Fehler- wert 1	Bedeutung
00 hex	Unzulässige Parameternummer (Zugriff auf nicht vorhandenen Parameter)
01 hex	Parameterwert nicht änderbar (Änderungsauftrag für einen nicht änderbaren Parameterwert)
02 hex	Untere oder obere Wertgrenze überschritten (Änderungsauftrag mit Wert außerhalb der Wertgrenzen)
03 hex	Fehlerhafter Subindex (Zugriff auf nicht vorhandenen Index des Parameters)
04 hex	Kein Array (Zugriff mit Subindex auf nichtindizierten Parameter)
05 hex	Falscher Datentyp (Änderungsauftrag mit Wert, der nicht zum Datentyp des Parameters passt)
06 hex	Kein Setzen erlaubt, sondern nur Zurücksetzen (Änderungsauftrag mit Wert ungleich 0 ohne Erlaubnis)
07 hex	Beschreibungselement nicht änderbar (Änderungsauftrag auf nicht änderbares Beschreibungselement)
09 hex	Beschreibungsdaten nicht vorhanden (Zugriff auf nicht vorhandene Beschreibung, Parameterwert ist vorhanden)
0B hex	Keine Bedienhoheit (Änderungsauftrag bei fehlender Bedienhoheit)
0F hex	Kein Textarray vorhanden (Parameterwert ist zwar vorhanden, aber der Auftrag griff auf nicht vorhandenes Textarray zu)
11 hex	Auftrag wegen Betriebszustand nicht ausführbar (Zugriff ist aus nicht näher spezifizierten temporären Gründen nicht möglich)
14 hex	Wert unzulässig (Änderungsauftrag mit Wert, der zwar innerhalb der Grenzen liegt, aber aus anderen dauerhaften Gründen unzulässig ist, d. h. ein Parameter mit definierten Einzelwerten)
15 hex	Antwort zu lang (Die Länge der aktuellen Antwort überschreitet die maximal übertragbare Länge)
16 hex	Parameteradresse unzulässig (Unzulässiger oder nicht unterstützter Wert für Attribut, Anzahl Elemente, Parameternummer oder Subindex oder eine Kombination davon)

3.2 PROFIdrive-Profil - Azyklische Kommunikation

Fehler- wert 1	Bedeutung
17 hex	Format unzulässig (Änderungsauftrag für unzulässiges oder nicht unterstütztes Format)
18 hex	Anzahl Werte nicht konsistent (Anzahl der Werte der Parameterdaten stimmen nicht mit der Anzahl der Elemente in der Parameteradresse überein)
19 hex	Antriebsobjekt existiert nicht (Zugriff auf ein nicht vorhandenes Antriebsobjekt)
20 hex	Parametertext nicht änderbar
21 hex	Dienst wird nicht unterstützt (Unerlaubte oder unbekannte Auftrags-ID).
6B hex	Änderungsauftrag ist bei freigegebenem Regler nicht möglich. (Der Umrichter weist den Änderungsauftrag zurück, weil der Motor eingeschaltet ist. Beachten Sie das Parameter-Attribut "Änderbar" (C1, C2, U, T) im Listenhandbuch.
	Übersicht der Handbücher (Seite 232))
6C hex	Unbekannte Einheit.
6E hex	Änderungsauftrag ist nur in Motor-Inbetriebnahme möglich (p0010 = 3).
6F hex	Änderungsauftrag ist nur in Leistungsteil-Inbetriebnahme möglich (p0010 = 2).
70 hex	Änderungsauftrag ist nur in Schnellinbetriebnahme (Grundinbetriebnahme) möglich (p0010 = 1).
71 hex	Änderungsauftrag ist nur möglich, wenn der Umrichter betriebsbereit ist (p0010 = 0).
72 hex	Änderungsauftrag ist nur bei Parameter-Reset (Rücksetzen auf Werkseinstellung) möglich (p0010 = 30).
73 hex	Änderungsauftrag ist nur bei Inbetriebnahme der Sicherheitsfunktionen möglich (p0010 = 95).
74 hex	Änderungsauftrag ist nur bei Inbetriebnahme der Technologischen Applikation/Einheiten möglich (p0010 = 5).
75 hex	Änderungsauftrag ist nur in einem Inbetriebnahmezustand möglich (p0010 ≠ 0).
76 hex	Änderungsauftrag ist aus internen Gründen nicht möglich (p0010 = 29).
77 hex	Änderungsauftrag ist im Download nicht möglich.
81 hex	Änderungsauftrag ist im Download nicht möglich.
82 hex	Übernahme der Steuerungshoheit ist über BI: p0806 gesperrt.
83 hex	Gewünschte Verschaltung ist unmöglich (Konnektorausgang liefert nicht Float-Wert, der Konnektoreingang benötigt aber Float)
84 hex	Umrichter akzeptiert keinen Änderungsauftrag (Umrichter ist mit internen Berechnungen beschäftigt. Siehe Parameter r3996 im Listenhandbuch des Umrichters.
	Übersicht der Handbücher (Seite 232))
85 hex	Keine Zugriffsmethode definiert.
86 hex	Schreibzugriff nur bei Inbetriebnahme der Datensätze (p0010 = 15) (Der Betriebszustand des Umrichters verhindert eine Parameteränderung)
87 hex	Know-How-Schutz aktiv, Zugriff gesperrt
C8 hex	Änderungsauftrag unterhalb aktuell gültiger Grenze (Änderungsauftrag auf einen Wert, der zwar innerhalb der "absoluten" Grenzen liegt, der aber unterhalb der aktuell gültigen unteren Grenze liegt)
C9 hex	Änderungsauftrag oberhalb aktuell gültiger Grenze (Beispiel: Ein Parameterwert ist zu groß für die Umrichterleistung)
CC hex	Änderungsauftrag nicht erlaubt (Ändern nicht erlaubt, da Zugriffsschlüssel nicht vorhanden)

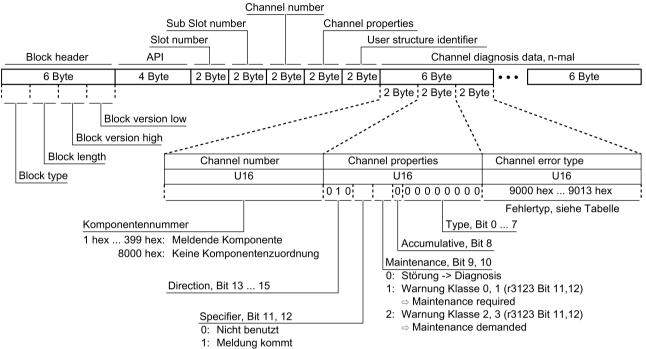
3.3 PROFIdrive-Profil - Diagnosekanäle

Die Umrichter stellen die für PROFIBUS und PROFINET genormten Diagnosen zur Verfügung. Damit ist es möglich, Störungen, bzw. Warnungen direkt an einem HMI (Bildschirm einer Steuerung) auszugeben.

Dabei bietet PROFINET einen größeren Funktionsumfang als PROFIBUS

- PROFIBUS: Störungen ohne Komponentenzuordnung
- PROFINET: Störungen und Warnungen mit Komponentenzuordnung

Die Stör- und Warnmeldungen sind im Umrichter in folgenden Parametern abgelegt

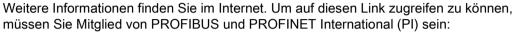

- r0947[0 ... 63]: Störnummer
- r2122[0 ... 63]: Warncode
- r3120[0 ... 63]: Komponente, die die Störung betrifft (nur bei PROFINET)
- r3121[0 ... 63]: Komponente, die die Warnung betrifft (nur bei PROFINET)

Der Umrichter überträgt die Meldungen in der Reihenfolge ihres Auftretens

Die Steuerung erzeugt den Zeitstempel beim Eintreffen der Meldungen

3.3.1 Diagnose mit PROFINET

PROFINET verwendet zur Übertragung der PROFIdrive-Meldungsklassen die Kanaldiagnose (Channel Diagnosis).


- Meldung geht, keine weitere Meldung auf dem Kanal vorhanden
 Meldung geht, weitere Meldungen stehen auf dem Kanal an
- 9000 hex Hardware / software error 900A hex Position/speed actual value incorrect or not available 9001 hex Network fault 900B hex Internal (DRIVE-CLiQ) communication error 9002 hex Supply voltage fault 900C hex Infeed faulted 9003 hex DC link overvoltage 900D hex Braking module faulted 9004 hex Power electronics faulted 900E hex Line filter faulted 9005 hex Overtemperature of the electronic components 900F hex External measured value / signal state outside the permissible range 9006 hex Ground fault / inter-phase short circuit 9010 hex Application / technological function faulted 9007 hex Motor overload 9011 hex Error in the parameterization / configuration /commissioning procedure 9008 hex Communication error to the higher-level control 9012 hex General drive fault 9009 hex Safety monitoring channel has identified an 9013 hex Auxiliary unit faulted Bild 3-18 Struktur der Kanaldiagnose

Auslesen von Diagnosedaten

Die Steuerung fordert die Diagnosedaten vom Umrichter über "Datensatz lesen", z. B. über ein Read-Record mit Index 800C hex.

Dabei gelten folgende Regeln:

- 1 Meldungsblock (=ChannelDiagnosisData) wenn am Umrichter (eine oder mehrere) Störungen der gleichen Meldungsklasse erkannt werden
- n Meldungsblöcke wenn am Umrichter n Störungen unterschiedlicher Meldungsklassen erkannt werden

PROFINET-IO-Spezifikation (http://www.profibus.com/nc/download/specifications-standards/downloads/profinet-io-specification/display/)

3.3.2 Diagnose mit PROFIBUS

Zu einer Diagnosemeldung in PROFIBUS gehören folgende Objekte

Standarddiagnose

- Reihenfolge: immer an der ersten Stelle der Meldung
- Länge immer 6 Byte

• Kennungsbezogene Diagnose

- Reihenfolge: an zweiter, dritter oder vierter Stelle
- Idendifikation über Header,
- Länge bei SINAMICS G120 immer 2 Byte

Statusmeldungen/Modulstatus

- Reihenfolge: an zweiter, dritter oder vierter Stelle
- Idendifikation über Header,
- Länge bei SINAMICS G120:
 - 5 Byte bei Projektierung über GSD
 - 6 Byte bei Projektierung über Objektbibliothek

• Kanalbezogene Diagnose

- Reihenfolge: an zweiter, dritter oder vierter Stelle
- Idendifikation über Header,
- Länge immer 3 Byte

Diagnosealarm mit DS0 / DS1

- Reihenfolge: immer an der letzten Stelle der Meldung
- Slotspezifisch: der aktuelle Zustand des für die Meldung verantwortlichen Slots wird übertragen.

Hinweis

Voraussetzung für die Diagnose über PROFIBUS

Für die Diagnose über Profibus muss der Master im DPV1-Modus arbeiten.

Standarddiagnose

Byte	Name					Bit			
Nr.	INAITIE	7	6	5	4	3	2	1	0
1	Stations- status 1	Master_ Lock = 0	Prm_ Fault	0	Not supported	Ext_Diag	Cfg_Fault	Station_ not_ Ready	Station_ Non_ Exist = 0
2	Stations- status 2	0	0	Sync_ Mode	Freeze_ Mode	WD_ON	0	Start_ Diag = 0	Prm_Req
3	Stations- status 3	Ext_Diag_ Overflow	0	0	0	0	0	0	0
4			Master_Add						
5			Ident_Number (HighByte) des Slaves						
6				Ident_	Number (Lo	wByte) des	Slaves		

Für die Diagnose sind folgende Werte entscheidend:

- Ext_Diag: Sammelmeldung für Diagnosen im Slave:
 - 0: kein Fehler steht an
 - 1: mindestens ein Alarm oder Fehler steht an
- Ext_Diag_Overflow:

Anzeige für Diagnoseüberlauf im Slave (bei mehr als 240 Byte)

Kennungsbezogene Diagnose

Byte Name			Bit							
Nr.	Nr.	7	6	5	4	3	2	1	0	
1	Header- Byte	Hea 0	l ader 1	Blocklänge 2 32 Bei SINAMICS G120 immer = 2						
2	Bit- Struktur	KB_7	KB_6	KB_5 KB_4 KB_3 KB_2 KB_1 KB_0					KB_0	
• •	•			•	• •				• • •	
m	Bit- Struktur			KB_n+1	KB_n					

Die Kennungsbezogene Diagnose stellt für jeden bei der Konfiguration des Geräts vergebenen Slot ein Bit (KB_n) zur Verfügung. Wenn an einem Slot eine Diagnosenachricht ansteht, wird dessen KB_n = 1.

Beim G120 ist immer nur ein Slot vergeben:

- KB_0 bei Projektierung mit der GSD
- KB_3 bei Projektierung mit dem Objektmanager

Statusmeldungen, Modulstatus

Byte	Name	Bit								
Nr.	INAITIC	7	6	5	4	3	2	1	0	
1	Header- Byte	Hea 0	l ader 0		Blocklänge 2 32 Bei SINAMICS G120 = 5 oder 6					
2	Modul- Status		82 hex (Statusblock)							
3	Slot		0							
4	Specifier					0				
5	Slot- Struktur	Slo	ot_4	Slo	ot_3	Slo	ot_2	Slo	t_1	
• •	•	• • •								
m	Slot- Struktur	• ·		Slo	ot n					

Beim G120 wird für alle Slots unabhängig vom Zustand immer "00", d. h. gültige Nutzdaten ausgegeben.

Bit

Kanalbezogene Diagnose

Byte

20

21

Electronic component overtemp.

Ground/phase fault detected

Byte	Name				Bit					
Nr.	INAITIE	7	6	5	4	3	2	1	0	
n	Header- Byte	Hea 1	ader 0		Modulnummer 0 63					
n+1	Bit- Struktur	Input / 1	Output 1		0 - keine Komponentenzuordnung					
n+2	Bit- Struktur	Kanal 0	typ - unspez 0	zifisch 0	,					
2	Undervol	tage			22	Motor o	verload			
3	Overvolta	age			23	Commi	ın. with co	ntroller faul	ted	
9	Error				24	Safety	monit. Det	ected an er	ror	
16	Hardware	e/software	error		25	Act. Po	Act. Position/speed value error			
17	Line supp	ply/filter faulted				Internal communication faulted				
18	DC-link o	vervoltage		27 Infeed faulted						
19	Power el	lectronics faulted 28 Braking controller faulted								

Wenn mehrere Störungen an einem Umrichter der gleichen Meldungsklasse zugeordnet sind, wird nur eine Meldung angezeigt.

29

30

External signal state error

Application/function faulted

Diagnosealarm mit DS0 / DS1

Byte	Name				- 1	Bit				
Nr.	INAITIE	7	6	5	4	3	2	1	0	
1	Header- Bytes	Hea 0	ader 0			Blocklär	nge = 15			
2		0			Dia	gnosealarm	n =1			
3		0		В	Slot-f ei SINAMIC	Nummer 0 . S G120 1 o	der 4: Proje	ektierung üb ung über Bi	er GSD = 1 bliothek = 4	
4		0	0	31, Sequ	ıenz-Numm	er	Add_Ack	Alarm S _l	Alarm Specifier 1)	
5	DS0 Byte 0	0	0	0	0	0 2)	0	O 3)	0 4)	
6	DS0 Byte 1	0	0	0	1 ⁵⁾	O ⁶⁾	O ⁶⁾	O 6)	O ⁶⁾	
7	DS0 Byte 2	0	0	0	0	0	0	0	0	
8	DS0 Byte 3	0	0	0	0	0	0	0	0	
9	Info Byte 1	Mixed		= 4	l5 hex (Cha	nnelTypeID	= SINAMIC	CS)		
10	Info Byte 2			=	24 (Diagnos	sebits / Kan	al)			
11	Info Byte 3				= 1 (ein Ka	nal meldet)				
12	Channel Error Vector	0	0	0	0	0	0	0	1	
13	Kanal-	Err 7	Err 6	Err 5	Err 4	Err 3	Err 2	Err 1	Err 0	
14	bezogene Diagnose	Err 15	Err 14	Err 13	Err 12	Err 11	Err 10	Err 9	Err 8	
15	(Kanal 0)	0	0	0	0	Err 19	Err 18	Err 17	Err 16	

- 1) Alarm Specifier
 - 1: Fehler steht an und Slot ist nicht in Ordnung
 - 2: Fehler ist behoben und Slot ist in Ordnung
 - 3: Fehler ist behoben und Slot ist nicht in Ordnung
- 2) Channel fault present
 - 0: keine Störung steht an
 - 1: Störung steht an
- 3) Internal fault
 - 0: keine Störung steht an
 - 1: Störung steht an

- 4) Module fault
 - 0: keine Störung steht an
 - 1: Störung steht an
- 5) Channel Information present
 - 1: DS1 existiert
- Type of class module = 0011 (distributed)

Eine Tabelle mit den Meldungsklassen finden Sie im Listenhandbuch des Umrichters.

Übersicht der Handbücher (Seite 232)

3.4 Identifikation & Maintenance Daten (I&M)

I&M-Daten

Der Umrichter unterstützt die folgenden Identifikation und Maintenance (I&M) Daten.

I&M- Daten	Format	Erläuterung	Zugehöriger Parameter	Beispiel für den Inhalt
I&M0	u8[64] PROFIBUS u8[54] PROFINET	Umrichterspezifische Daten, nur lesbar	-	Siehe unten
I&M1	Visible String [32]	Anlagenkennzeichen	p8806[0 31]	"ak12- ne.bo2=fu1"
	Visible String [22]	Ortskennzeichen	p8806[32 53]	"sc2+or45"
I&M2	Visible String [16]	Datum	p8807[0 15]	"2013-01-21 16:15"
I&M3	Visible String [54]	Beliebiger Kommentar oder Anmerkung	p8808[0 53]	-
I&M4	Octet String[54]	Prüfsignatur zur Änderungsverfolgung bei Safety Integrated.	p8809[0 53]	Werte von r9781[0] und
		Dieser Wert kann vom Anwender geändert werden.		r9782[0]
		Durch p8805 = 0 wird der die Prüfsignatur auf den durch die Maschine erzeugten Wert zu- rückgesetzt.		

Der Umrichter überträgt seine I&M-Daten auf Anforderung an eine übergeordnete Steuerung oder an einen PC/PG mit installiertem STEP 7 oder TIA-Portal.

1&M0

Bezeichnung	Format	Beispiel für den Inhalt	Gültig für PROFINET	Gültig für PROFIBUS
Manufacturer specific	u8[10]	00 00 hex		✓
MANUFACTURER_ID	u16	42d hex (=Siemens)	√	✓
ORDER_ID	Visible String [20]	"6SL3246-0BA22- 1FA0"	✓	✓
SERIAL_NUMBER	Visible String [16]	"T-R32015957"	√	✓
HARDWARE_REVISION	u16	0001 hex	√	✓
SOFTWARE_REVISION	char, u8[3]	"V" 04.70.19	√	✓
REVISION_COUNTER	u16	0000 hex	√	✓
PROFILE_ID	u16	3A00 hex	√	✓
PROFILE_SPECIFIC_TYPE	u16	0000 hex	✓	✓
IM_VERSION	u8[2]	01.02	✓	✓
IM_SUPPORTED	bit[16]	001E hex	✓	✓

3.5 S7-Kommunikation

Die Kommunikation über das S7-Protokoll ermöglicht Folgendes:

- Den Zugriff auf den Umrichter mit Startdrive.
- Die Fernwartung des Umrichters mit Startdrive über Netzwerkgrenzen.
 - Fernwartung über Netzwerkgrenzen (https://support.industry.siemens.com/cs/ww/de/view/97550333)
- Die Steuerung des Umrichters direkt über SIMATIC-Panels über PROFIBUS oder PROFINET ohne überlagerte Steuerung.
 - Direkter Zugriff auf einen SINAMICS-G120-Umrichter mit einem SIMATIC-Panel (Seite 55)

Hinweis

Anzahl der S7-Protokoll-Verbindungen

Der Umrichter unterstützt vier S7-Protokoll-Verbindungen. Zwei davon werden für Startdrive benötigt. Die beiden weiteren stehen für den Zugriff auf den Umrichter über SIMATIC Panels zur Verfügung.

3.5.1 Direkter Zugriff auf einen SINAMICS-G120-Umrichter mit einem SIMATIC-Panel

Beispiel für den direkten Zugriff über ein SIMATIC-Panel auf den Umrichter

Sie wollen über das SIMATIC-Panel Folgendes tun:

- Den Umrichter ein- und ausschalten
- Einen Sollwert vorgeben
- Den Istwert und den Status anzeigen

Voraussetzungen

Sie haben auf Ihrem Rechner folgende Softwarepakete installiert und die entsprechenden Einstellungen vorgenommen:

- WINCCflex 2008 SP1 oder eine h\u00f6here Version
- Startdrive
- Sie haben den Umrichter in Startdrive projektiert
- Umrichter und Panel sind über PROFIBUS- oder PROFINET miteinander verbunden.
- Im Umrichter und im Panel sind die gleichen Baudraten eingestellt.
- Die in WinCC flexible projektierte Bus-Adresse stimmt mit der Bus-Adresse des Umrichters überein.

Einstellungen im Umrichter anpassen

Vorgehensweise

- Setzen Sie folgende Einstellungen und Freigaben, damit der Umrichter Befehle über das Panel akzeptiert:
 - Setzen Sie die beiden Signalquellen für AUS2 (p0844 und p0845) auf 1: p0844 = 1 p0845 = 1
 - Setzen Sie die beiden Signalquellen für AUS3 (p0848 und p0849) auf 1: p0848 = 1 p0849 = 1
 - setzen Sie die Freigaben für den Hochlaufgeber p1140 = 1 p1141 = 1
 - setzen Sie die Sollwertfreigabe p1142 = 1

2. Stellen Sie Parameter für den EIN-/AUS1-Befehl über das SIMATIC-Panel ein

- Setzen Sie p0840[0] = 2094.0
 Damit verschalten Sie den EIN-/AUS1-Befehl mit dem Bit 0 des BiCo-Wandlers 2094.
 Die Signalquelle für diesen Parameter ist p2099.
- Setzen Sie nun p2099[0] = p2900
 damit geben Sie den EIN-/AUS1-Befehl vor, indem Sie P2900 = 1 (EIN) oder 0 (AUS1) setzen
- 3. Stellen Sie Parameter für die Sollwertvorgabe ein
 - Setzen Sie
 P1070 = 1001 (Festsollwert 1 als Sollwert)
 P1016 = 1 (Direkte Anwahl des Drehzahlsollwerts)
 P1020 = 1 (Drehzahlfestsollwert-Auswahl, Bit 0)
- 4. Istwert und Zustandswort

Für die Darstellung des Drehzahlistwerts (r0021) und des Zustandsworts (r0052) sind umrichterseitig keine weiteren Einstellungen erforderlich.

Sie haben die Einstellungen im Umrichter vorgenommen. \Box

Einstellungen am SIMATIC-Panel

Vorgehensweise

1. Projektieren Sie die Verbindung über WINCCflex

- Geben Sie einen Namen für die Verbindung ein
- Setzen Sie den Wert in der Spalte "Aktiv" auf "Ein"
- Wählen Sie als Kommunikationstreiber "SIMATIC S7 300/400".
- Setzen Sie den Wert in der Spalte "Online" auf "Ein"

2. Nehmen Sie für die projektierte Verbindung folgende Einstellungen vor:

- Wählen Sie die Schnittstelle (IF1 B bei PROFIBUS, "Ethernet" bei PROFINET)
- Stellen Sie bei PROFIBUS die Baudrate ein
- Vergeben Sie eine Busadresse (PROFIBUS) bzw. eine IP-Adresse (PROFINET)
- Wählen Sie S7ONLINE als Zugangspunkt aus
- Wenn keine weitere Steuerung am Umrichter angeschlossen ist, markieren Sie "Einziger Master am Bus"
- Wählen Sie den Zyklischen Betrieb ab.

3. EIN/AUS1:

 legen Sie für den Parameter p2900 eine Variable an, die sich auf die Adresse "Datenbaustein 2900 mit den Datenwort DBD 0 (Datentyp Doppelwort)" bezieht: DB2900.DBD 0

Sie können den EIN-/AUS1 auf dem Panel über einen oder zwei Taster realisieren.

4. Sollwert

 legen Sie für den Parameter 1001 eine Variable an, die sich auf die Adresse "Datenbaustein 1001 mit den Datenwort DBD 0 (Datentyp Real)" bezieht: DB1001.DBD 0

Die Anzeige realisieren Sie über ein E/A-Feld.

5. Istwertanzeige

 legen Sie für den Parameter r0021 eine Variable an, die sich auf die Adresse "Datenbaustein 21 mit den Datenwort DBD 0 (Datentyp Real)" bezieht: DB21.DBD 0

Die Anzeige realisieren Sie über ein E/A-Feld.

6. Zustandsanzeige

 legen Sie für den Parameter r0052 eine Variable an, die sich auf die Adresse "Datenbaustein 52 mit den Datenwort DBW 0 (Datentyp Word)" bezieht: DB52.DBW 0

Die Anzeige realisieren Sie z. B. über ein E/A-Feld mit Binärdarstellung.

Damit haben Sie die wesentlichen Einstellungen im SIMATIC-Panel vorgenommen. $\hfill\square$

Grundsätzliches für den Zugriff auf Umrichterparameter

Sie müssen für jeden Parameter, den Sie über das SIMATIC-Panel anzeigen oder ändern wollen, eine Variable mit folgendem Aufbau anlegen: DBX DBY Z

- X: Datenbausteinnummer ≙ Parameternummer
- Y: Datentyp (finden Sie in der Parameterliste)
- Z: Datenbausteinoffset
 △ Parameterindex

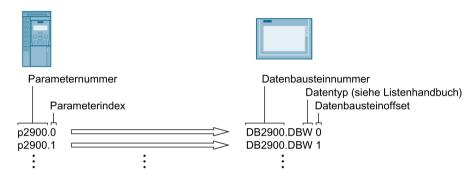


Bild 3-19 Zugriff auf Umrichterparameter am Beispiel eines SINAMICS G120

3.6 Kommunikation über PROFINET

Sie können den Umrichter entweder in ein PROFINET-Netzwerk integrieren oder mit dem Umrichter über Ethernet kommunizieren.

Der Umrichter im PROFINET IO-Betrieb

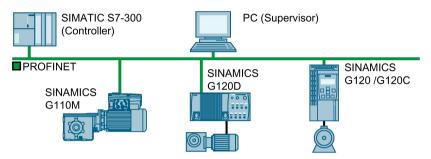


Bild 3-20 Der Umrichter im PROFINET IO-Betrieb

Der Umrichter unterstützt folgende Funktionen:

- RT
- IRT: Der Umrichter leitet die Taktsynchronität weiter, unterstützt die Taktsynchronität aber nicht.
- MRP: Medienredundanz, stoßbehaftet mit 200 ms. Voraussetzung: Ringtopologie
- MRPD: Medienredundanz, stoßfrei. Voraussetzung: IRT und in der Steuerung angelegte Ringtopologie
- Diagnosealarme entsprechend der im PROFldrive-Profil festgelegten Fehlerklassen.
- Gerätetausch ohne Wechselmedium
- Shared Device bei Control Units mit fehlersicheren Funktionen

Der Umrichter als Ethernet-Teilnehmer

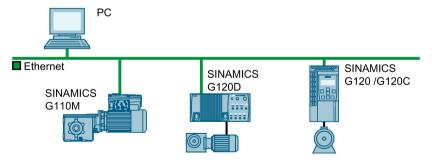


Bild 3-21 Der Umrichter als Ethernet-Teilnehmer

Weitere Informationen zu PROFINET

Weitere Informationen zu PROFINET finden Sie im Internet:

- PROFINET der Ethernet-Standard für die Automatisierung (http://w3.siemens.com/mcms/automation/de/industrielle-kommunikation/profinet/Seiten/Default.aspx)
- PROFINET Systembeschreibung (https://support.industry.siemens.com/cs/ww/de/view/19292127)

3.6.1 Umrichter mit PROFINET-Schnittstelle

Die folgenden Tabellen zeigen die Pinbelegung und die Stecker, die Sie für Ihren Umrichter benötigen.

Über die beiden Buchsen am Umrichter können Sie eine Ring- oder Linientopologie realisieren. Am Ende bzw. Anfang einer Linie benötigen Sie nur eine der beiden Buchsen.

Andere Topologien realisieren Sie mithilfe von Switches.

Tabelle 3- 13 Zuordnungstabelle

Umrichter/Control Unit	Anschluss über					
		X150 P1/ X150 P2 (RJ45)	X03/X04 (RJ45)	X03/X04 (M12)		
		8 1	1 8			
	G120					
	• CU230P-2 PN	x				
	• CU240E-2 PN	Х				
	• CU240E-2 PN-F	х				
	• CU250S-2 PN	Х				
	G120C					
	• G120C PN	x				
	G120D					
	• CU240D-2 PN			x		
	• CU240D-2 PN-F			Х		
	• CU250D-2 PN-F			х		
manning places of	• CU240D-2 PN-F [PP]		х			
	• CU250D-2 PN-F [PP]		х			
30/3/	G110M					
	• CU240M PN			х		

3.6 Kommunikation über PROFINET

Tabelle 3- 14 Pinbelegung der Stecker

Signal	X150 P1/ X150 P2 (RJ45)	X03/X04 (RJ45)	X03/X04 (M12)
	8 1	1 8	(1) (3) (4)
TX-, Sendedaten -	1	1	1
RX+, Empfangsdaten +	3	2	2
TX+. Sendedaten +	2	3	3
RX-, Empfangsdaten -	6	6	4
	4	4	
	5	5	
	7	7	
	8	8	

Steckerempfehlung

RJ45, IP20: 6GK1901-1BB10-2Ax0

Informationen zur Montage des SIMATIC NET Industrial Ethernet FastConnect RJ45 Plug 180 finden Sie im Internet:

Montageanleitung für SIMATIC NET Industrial Ethernet FastConnect RJ45 Plug (http://support.automation.siemens.com/WW/view/de/37217116/133300)

3.6.2 Umrichter in PROFINET integrieren

Um den Umrichter über PROFINET an eine Steuerung anzuschließen, gehen Sie folgendermaßen vor:

Vorgehensweise

 Integrieren Sie den Umrichter mit PROFINET-Leitungen über die beiden PROFINET-Buchsen X150-P1 und X150-P2, bzw. X03 und X04 in das Bus-System (z. B. Ringtopologie) der Steuerung.

Die Position der Buchsen finden Sie in der Betriebsanleitung des Umrichters.

Pinbelegung: Umrichter mit PROFINET-Schnittstelle (Seite 61).

Die maximal zulässige Leitungslänge zum vorigen beziehungsweise folgenden Teilnehmer beträgt 100 m.

 Versorgen Sie den Umrichter über die Klemmen 31 und 32, bzw. über X01 extern mit DC 24 V.

Die externe 24-V-Versorgung ist nur erforderlich, wenn in der Anlage die Kommunikation mit der Steuerung auch bei abgeschalteter Netzspannung weiter laufen soll.

Sie haben den Umrichter über PROFINET mit der Steuerung verbunden.

O

3.6.3 PROFINET IO-Betrieb

3.6.3.1 Was müssen Sie für die Kommunikation über PROFINET einstellen?

Überprüfen Sie anhand der folgenden Tabelle die Kommunikationseinstellungen. Wenn Sie die Fragen mit "Ja" beantworten können, haben Sie die Kommunikationseinstellungen richtig gesetzt und können den Umrichter über den Feldbus steuern.

Fragen	Antwort/Beschreibung		
Ist der Umrichter richtig am Busnetz angeschlossen?	Umrichter in PROFINET integrieren (Seite 62)		
Stimmen die IP-Adresse und der Gerätename in Umrichter und Steuerung überein?	Kommunikation zur Steuerung konfigurieren (Seite 63)		
Ist im Umrichter das gleiche Telegramm eingestellt wie in der übergeordneten Steuerung?	Telegramm in der Steuerung einstellen.		
Sind die Signale, die Umrichter und Steuerung über PROFINET austauschen, richtig verschaltet?	Signale im Umrichter PROFIdrive-konform verschalten.		
	PROFIdrive-Profil - Zyklische Kommunikation (Seite 17)		
	PROFIdrive-Profil - Azyklische Kommunikation (Seite 42)		

Kommunikation mit der Steuerung, auch bei abgeschalteter Netzspannung

Wenn in Ihrer Anlage die Kommunikation mit der Steuerung auch bei abgeschalteter Netzspannung weiter laufen soll, müssen Sie den Umrichter / die Control Unit extern mit DC 24 V versorgen. Verwenden Sie dazu die Klemmen 31 und 32, bzw. den Stecker X01. Weitere Details finden Sie in der Betriebsanleitung des Umrichters, bzw. der Control Unit.

3.6.3.2 Kommunikation zur Steuerung konfigurieren

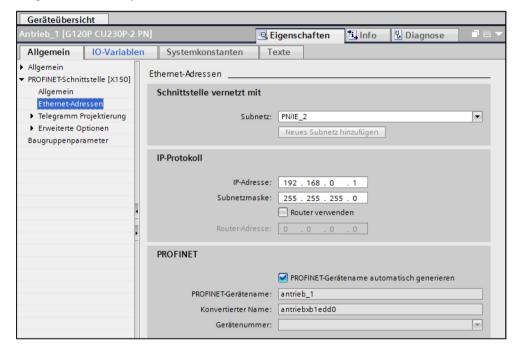
Konfigurieren der Kommunikation mit einer SIMATIC S7-Steuerung

Wenn der Umrichter nicht in der Hardwarebibliothek enthalten ist, haben Sie folgende Möglichkeiten:

- Installieren Sie die aktuellste Startdrive-Version
- Installieren Sie die GSDML des Umrichters über "Extras/Gerätebeschreibungsdateien (GSD) verwalten" in den Baugruppenkatalog.

Konfigurieren der Kommunikation mit einer Fremdsteuerung

- 1. Importieren Sie die Gerätedatei (GSDML) des Umrichters in das Projektierungs-Tool Ihrer Steuerung.
- 2. Konfigurieren Sie die Kommunikation.


Kommunikation mit Startdrive konfigurieren

Gehen Sie wie folgt vor, um die Kommunikation mit der Steuerung einzustellen.

- Aktivieren Sie in Startdrive folgende Fenster: "Ansicht/Projektnavigation" und "Ansicht/Inspektorfenster".
- Öffnen Sie in der Projektnavigation den Antrieb, doppelklicken Sie dort auf "Gerätekonfiguration".

Dadurch öffnen Sie im Inspektorfenster das Fenster für die Einstellungen der PROFINET-Schnittstelle

- Klicken Sie dort auf "Ethernet-Adressen"
- Tragen Sie die entsprechenden Werte ein.

Sie haben die Kommunikation mit der Steuerung angelegt.

Über die Parameteransicht können Sie die Daten direkt eingeben oder auslesen. Wählen Sie dazu die Parametergruppe "Kommunikation" und die Auswahl "Erweiterte Parameter anzeigen".

3.6.3.3 GSDML installieren

Vorgehensweise

- 1. Speichern Sie die GSDML auf Ihrem PC.
 - Mit Internetzugang:

- Ohne Internetzugang:

Stecken Sie eine Speicherkarte in den Umrichter.

Setzen p0804 = 12.

Der Umrichter schreibt die GSDML als gepackte Datei (*.zip) ins Verzeichnis /SIEMENS/SINAMICS/DATA/CFG auf die Speicherkarte.

- 2. Entpacken Sie die GSDML-Datei auf Ihrem Rechner.
- 3. Importieren Sie die GSDML in das Engineering-System der Steuerung.

Damit haben Sie die GSDML im Engineering-System der Steuerung installiert. □

3.6.3.4 Diagnose über die Steuerung aktivieren

Der Umrichter bietet die Funktionalität, Stör- und Warnmeldungen (Diagnosemeldungen) entsprechend der PROFIdrive-Fehlerklassen an die übergeordnete Steuerung zu übertragen.

Die Funktionalität müssen Sie in der übergeordneten Steuerung anwählen und durch einen Hochlauf aktivieren.

3.6.4 PROFlenergy

PROFlenergy ist ein Energiemanagement-Standard für Produktionsanlagen, das auf dem Kommunikationsprotokoll PROFINET basiert. Die Funktionalität ist zertifiziert und im PROFlenergy-Profil der PNO beschrieben.

Die Steuerung überträgt die PROFlenergy-Befehle im azyklischen Betrieb im Datensatz 80A0 hex an den Umrichter.

Die Umrichter unterstützen das PROFlenergy-Profil V1.1 und die Funktionseinheit Klasse 3.

Im Umrichter sind die Parameter r5600 bis p5614 für PROFlenergy-Funktionen reserviert.

Ein Anwendungsbeispiel zum Energie sparen mit PROFlenergy finden Sie im Internet:

PROFlenergy - Energie sparen mit SIMATIC S7 (https://support.industry.siemens.com/cs/ww/de/view/41986454)

3.6.4.1 Allgemeines Verhalten des Umrichters im PROFlenergy-Energiesparmodus

- Wenn der PROFlenergy-Energiesparmodus aktiv ist, gibt der Umrichter die Warnung A08800 aus.
- Wenn der PROFlenergy-Energiesparmodus aktiv ist, blinkt die RDY-LED grün wie folgt:
 500 ms an. 3000 ms aus.

- Wenn der PROFlenergy-Energiesparmodus aktiv ist, sendet der Umrichter keine Diagnosealarme.
- Wenn die Busverbindung zur Steuerung unterbrochen wird, während sich der Umrichter im Energiesparmodus befindet, verlässt der Umrichter den Energiesparmodus und wechselt in den normalen Betrieb.
- Ebenso wechselt der Umrichter in den normalen Betrieb, wenn die Steuerung in Stopp geht, während sich der der Umrichter im Energiesparmodus befindet.

3.6.4.2 Unterstützte PROFlenergy-Energiesparmodi

Die Umrichter G110M, G120 und G120C unterstützen den PROFlenergy-Energiesparmodus 2.

Die Umrichter G120D unterstützen den PROFlenergy-Energiesparmodus 1.

PROFlenergy-Energiesparmodus 2

Der Parameter r5600 zeigt den wirksamen PROFlenergy-Energiesparmodus an.

Der Konnektorparameter r5613 zeigt, ob der PROFlenergy-Energiesparmodus aktiv ist. Über diesen Parameter können Sie weitere Reaktionen einstellen.

PROFlenergy-Energiesparmodus 1

Der PROFlenergy-Energiesparmodus 1 ist eine Erweiterung des PROFlenergy-Energiesparmodus 2.

Mit dem PROFlenergy-Energiesparmodus 1 bietet der Umrichter zusätzlich folgende Funktionen:

- Der Umrichter schaltet die Versorgungsspannung seiner digitalen Ausgänge ab, sofern sie nicht mit r5613.x (Anzeige Energiesparmodus) verschaltet oder als sichere Ausgänge verwendet sind.
- Der Umrichter schaltet die Versorgungsspannung seiner Geber ab, sofern es sich nicht um HTL-Geber handelt, die dem Lageregler zugeordnet sind.

3.6.4.3 Einstellungen und Anzeigen für PROFlenergy im Umrichter

Pausenzeit

- Minimale Pausenzeit: p5602
 - wenn die Pausenzeit, die mit dem Befehl "Start_Pause" gesendet wird, gleich oder größer dem Wert von p5602[1] ist, geht der Umrichter in den Energiesparmodus.
 - Wenn die Pausenzeit kleiner ist als p5602[1], lehnt der Umrichter den Befehl "Start_Pause" mit 50 hex (kein passender Pausenmodus) ab.
- Maximale Pausenzeit: p5606

PROFlenergy sperren

Wenn Sie p5611.0 = 1 setzen, sperren Sie die Reaktion des Umrichters auf PROFlenergy-Steuerbefehle. In diesem Fall lehnt der Umrichter den Befehl "Start_Pause" mit 50 hex (kein passender Pausenmodus) ab.

Übergang in den Energiesparmodus aus den PROFIdrive-Zuständen Betriebsbereit (S3) und Betrieb (S4)

Wenn Sie p5611.2 = 1 setzen, ermöglichen Sie den Übergang in den Energiesparmodus aus den PROFIdrive-Zuständen Betriebsbereit (S3) und Betrieb (S4).

Dazu müssen Sie zusätzlich eine der folgenden Einstellungen setzen:

- p5611.1 = 1: der Umrichter löst mit dem Übergang in den Energiesparmodus einen AUS1-Befehl aus und geht in den Zustand Einschaltsperre (S1).
- p5611.1 = 0: Sie verschalten über p5614 eine Signalquelle, über die Sie den Umrichter abschalten und in den Zustand Einschaltsperre (S1) setzen.

Wenn die Steuerung den Befehl "End_Pause" bzw. "Start_Pause" mit einer Pausenzeit von 0 sendet, läuft der Umrichter nicht wieder an, auch wenn die Freigaben weiterhin gesetzt sind.

Damit der Umrichter wieder anläuft ist ein AUS1-/Ein-Befehl erforderlich.

PROFlenergy-Messwerte

PROFlenergy-			SINAMICS Quellparameter		Wertebereich		
Messwert Genauigkeit		Unit					
ID	Name	Domäne	Klasse		Nummer	Name	
34	Active Power	1	12	W	r0032	Wirkleistung geglättet	r2004
166	Power factor	1	12	1	r0038	Leistungsfaktor geglättet	0 1
200	Active Energy Import	2	11	Wh	r0039[1]	Energie aufgenommen	-

3.6.4.4 Steuerbefehle und Statusabfragen

PROFlenergy-Steuerbefehle

Start Pause

Schaltet abhängig von der Pausendauer in den Energiesparmodus.

- bei p5611.2 = 0 aus den Betriebszuständen S1 (Einschaltsperre) oder S2 (Einschaltbereit)
- bei p5611.2 = 1 auch aus den Betriebszuständen S3 (Betriebsbereit) oder S4 (Betrieb).
- Start Pause with time response

Schaltet abhängig von der Pausendauer in den Energiesparmodus und gibt zusätzlich die Übergangszeiten in der Befehlsantwort an.

- bei p5611.2 = 0 aus den Betriebszuständen S1 (Einschaltsperre) oder S2 (Einschaltbereit)
- bei p5611.2 = 1 auch aus den Betriebszuständen S3 (Betriebsbereit) oder S4 (Betrieb).
- End_Pause

Schaltet vom Energiesparmodus in den Betriebszustand.

Bricht das Umschalten vom Betriebszustand in den Energiesparmodus ab.

PROFlenergy-Statusabfragen

 List Energy Saving Modes Ermittelt alle unterstützten Energiesparmodi.

Get Mode

Ermittelt Informationen zum gewählten Energiesparmodus.

PEM Status

Ermittelt den aktuellen PROFlenergy-Status.

PEM Status with CTTO

Ermittelt den aktuellen PROFlenergy-Status wie den PEM Status zusätzlich mit der regulären Übergangszeit in den Betriebszustand.

PE Identify

Ermittelt die unterstützten PROFlenergy-Befehle.

Query_Version

Zeigt das implementierte PROFlenergy-Profil an.

Get Measurement List

Dieser Befehl gibt die Messwert-IDs zurück, die über den Befehl"Get_Measurement_Values" erreichbar sind.

Get_Measurement_List_with_object_number

Der Befehl gibt die Messwert-IDs und zugehörige Objekt-Nummer zurück, die über den Befehl "Get Measurement Values with object number" erreichbar sind.

- Get_Measurement_Values
 Der Befehl gibt die über die Messwert-ID angeforderten Messwerte zurück
- Get_Measurement_Values_with_object_number
 Der Befehl gibt die über die Messwert-ID und Objekt-Nummer angeforderten Messwerte zurück. Die Objekt-Nummer entspricht der Antriebsobjekt-ID.

Fehlerwerte

Tabelle 3- 15 Fehlerwerte in der Parameterantwort

Fehler- wert 1	Bedeutung
001 hex	Invalid Service_Request_ID
03 hex	Invalid Modifier
04 hex	Invalid Data_Structure_Identifier_RQ
06 hex	No PE energy-saving mode supported
07 hex	Response too long
08 hex	Invalid Block Header
50 hex	No suitable energy-saving mode available
51 hex	Time is not supported
52 hex	Impermissible PE_Mode_ID
53 hex	No switch to energy saving mode because of state operate
54 hex	service or function temporarily not available

3.6.5 Der Umrichter mit PROFINET-Schnittstelle als Ethernet-Teilnehmer

Standardmäßig ist der Umrichter für die PROFINET IO-Kommunikation eingestellt. Alternativ haben Sie die Möglichkeit, den Umrichter über die PROFINET-Schnittstelle ins Ethernet-Netzwerk integrieren.

Damit können Sie von einer beliebigen Stelle im Netz über Startdrive Diagnoseabfragen, Parameteränderungen oder eine Inbetriebnahme durchführen.

Die PROFINET IO-Kommunikation ist mit dem Umrichter als Ethernet-Teilnehmer nicht möglich.

Den Umrichter ins Ethernet-Netzwerk einbinden (IP-Adresse vergeben)

Vorgehensweise

- 1. Setzen Sie p8924 (PN DHCP Mode) = 2 oder 3
 - p8924 = 2: IP-Adressvergabe durch den DHCP-Server anhand der MAC-Adresse des Umrichters.
 - p8924 = 3: IP-Adressvergabe durch den DHCP-Server anhand des Ger\u00e4tenamens des Umrichters.
- Speichern Sie die Einstellungen mit p8925 = 2. Beim n\u00e4chsten Einschalten holt sich der Umrichter die IP-Adresse, und Sie k\u00f6nnen den Umrichter als Ethernet-Teilnehmer ansprechen.

Hinweis

Sofortige Umstellung ohne Neustart

Die Umstellung auf DHCP erfolgt sofort und ohne Neustart, wenn Sie die Änderung mit dem EtherNet/IP Kommando "Set Attribute Single" (Klasse F5 hex, Attribut 3) durchführen. Sie haben dazu folgende Möglichkeiten:

- über eine EtherNet/IP-Steuerung
- über ein EtherNet/IP-Inbetriebnahmetool

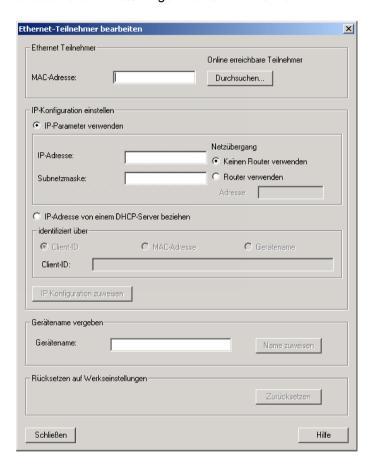
Damit haben Sie den Umrichter in Ethernet integriert.

Anzeigen

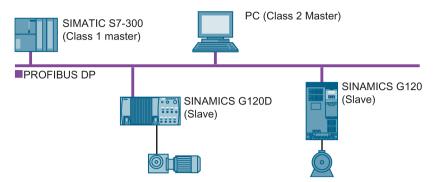
r8930: Gerätename des Umrichter r8934: Betriebsart, PN oder DHCP

r8935: MAC-Adresse

Zusätzliche Informationen


Erläuterungen zu den Parametern und Meldungen (A08565) finden Sie im Listenhandbuch des Umrichters

Übersicht der Handbücher (Seite 232).


Weitere Möglichkeiten, den Umrichter in Ethernet zu integrieren

Sie haben auch die Möglichkeit, den Umrichter z. B. über Proneta oder STEP7 in Ethernet zu integrieren.

Anbei als Beispiel die Maske "Ethernet-Teilnehmer bearbeiten" aus Step7, über die Sie die erforderlichen Einstellungen vornehmen können.

3.7 Kommunikation über PROFIBUS

Die PROFIBUS DP-Schnittstelle bietet folgende Funktionen:

- Zyklische Kommunikation
- Azyklische Kommunikation
- Diagnosealarme

Grundlegende Informationen zu PROFIBUS DP finden Sie im Internet:

- PROFIBUS-Informationen
 (https://support.industry.siemens.com/cs/ww/de/view/1971286)
- Installationsrichtlinien der PNO (http://www.profibus.com/download/installation-guide/)

3.7.1 Umrichter mit PROFIBUS-Schnittstelle

In den folgenden Tabellen finden Sie die Stecker und die Steckerbelegung der PROFIBUS DP-Schnittstelle.

Über die beiden Stecker am Umrichter können Sie eine Linientopologie realisieren. Andere Topologien realisieren Sie mithilfe von Switches.

Tabelle 3- 16 Zuordnungstabelle - Stecker

Umrichter/Control Unit		Anschluss über		
		X126 (D Sub - Buchse) 5 1	X03, Ein (M12)	X04, Aus (M12) 2 (1) (5) (3) (4)
	G120	9 6		
	0	X		
	• CU240B-2 DP	Х		
	• CU240E-2 DP	x		
	• CU240E-2 DP-F	×		
	• CU250S-2 DP	Х		
	G120C			
	• G120C DP	x		
· · · · · · · · · · · · · · · · · · ·	G120D			
	• CU240D-2 DP		х	х
	• CU240D-2 DP-F		х	Х
	• CU250D-2 DP-F		х	х
35 18	G110M			
	CU240M DP		х	х

3.7 Kommunikation über PROFIBUS

Tabelle 3- 17 Pinbelegung der Stecker

Signal	X126 (D Sub - Buch- se)	X03, Ein (M12)	X04, Aus (M12)
	5 1 00000 9 6	0 2 5 4 3	(1) (5) (3) (4)
Schirm, Erdungsanschluss	1	5	5
	2	1	1
RxD/TxD-P, Empfangen und Senden (B/B')	3	4	4
CNTR-P, Steuersignal	4		
DGND, Bezugspotenzial für Daten (C/C')	5		
VP, Versorgungsspannung	6		
	7	3	3
RxD/TxD-N, Empfangen und Senden (A/A')	8	2	2
	9		

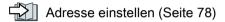
Empfohlene PROFIBUS-Stecker

Für den Anschluss der PROFIBUS-Leitung empfehlen wir Ihnen Stecker mit den folgenden Artikelnummern:

- 6GK1500-0FC10
- 6GK1500-0EA02

3.7.2 Was müssen Sie für die Kommunikation über PROFIBUS einstellen?

PROFIBUS-Kommunikation konfigurieren


Um die PROFIBUS-Kommunikation im PROFIBUS-Master zu konfigurieren, brauchen Sie ein passendes Engineering-System.

Laden Sie bei Bedarf die GSD-Datei des Umrichters ins Engineering-System.

Adresse einstellen

Stellen Sie die Adresse des PROFIBUS-Slave ein.

Telegramm einstellen

Stellen Sie im Umrichter das gleiche Telegramm ein wie im PROFIBUS-Master. Verschalten Sie im Steuerungsprogramm des PROFIBUS-Master das Telegramms mit den Signalen Ihrer Wahl.

PROFIdrive-Profil - Zyklische Kommunikation (Seite 17)

Anwendungsbeispiele

Anwendungsbeispiele zur PROFIBUS-Kommunikation finden Sie im Internet:

Drehzahl eines SINAMICS G110M/G120/G120C/G120D mit S7-300/400F über PROFINET oder PROFIBUS steuern, mit Safety Integrated (via Klemme) und HMI (https://support.industry.siemens.com/cs/ww/de/view/60441457)

Drehzahl eines SINAMICS G110M / G120 (Startdrive) mit S7-1500 (TO) über PROFINET oder PROFIBUS steuern, mit Safety Integrated (via Klemme) und HMI (https://support.industry.siemens.com/cs/ww/de/view/78788716)

3.7.3 Umrichter in PROFIBUS integrieren

Um den Umrichter über PROFIBUS DP an eine Steuerung anzuschließen, gehen Sie folgendermaßen vor:

Vorgehensweise

- 1. Integrieren Sie den Umrichter mit PROFIBUS-Leitungen in das Bus-System (z. B. Linientopologie) der Steuerung.
 - Umrichter mit Schutzart IP20: über die Buchse X126
 - Umrichter mit Schutzart IP65 (CU240D/CU250D) über X03 und X04

Die Position der Buchse finden Sie in der Betriebsanleitung des Umrichters.

Pinbelegung: Umrichter mit PROFIBUS-Schnittstelle (Seite 73).

Die maximal zulässige Leitungslänge zum vorigen beziehungsweise folgenden Teilnehmer beträgt 100 m bei einer Baudrate von 12 Mbit/s. Mit maximal 3 Repeatern können Sie eine Leitungslänge von insgeamt 400 m erreichen.

2. Versorgen Sie den Umrichter extern über die Klemmen 31 und 32, bzw. X01 extern mit DC 24 V.

Die externe 24-V-Versorgung ist nur erforderlich, wenn in der Anlage die Kommunikation mit der Steuerung auch bei abgeschalteter Netzspannung weiter laufen soll.

Sie haben den Umrichter über PROFIBUS DP mit der Steuerung verbunden. \square

3.7.4 Kommunikation zur Steuerung konfigurieren

Die Kommunikation konfigurieren Sie in der Steuerung, nachdem Sie den Umrichter am Bus angeschlossen haben.

3.7.4.1 Konfigurieren der Kommunikation mit einer SIMATIC S7-Steuerung

- Wenn der Umrichter im Baugruppenkatalog vom TIA-Portal aufgeführt ist, konfigurieren Sie die Kommunikation in der SIMATIC-Steuerung.
- Wenn der Umrichter nicht in der Hardwarebibliothek aufgeführt ist, installieren Sie entweder die neueste Startdrive-Version oder installieren Sie die GSD des Umrichters über "Extras/GSD-Datei installieren" in HW-Konfig.

3.7.4.2 Konfigurieren der Kommunikation mit einer Fremdsteuerung

Wenn Sie mit einer Fremdsteuerung arbeiten, müssen Sie die Gerätedatei (GSD) des Umrichters in der Steuerung installieren bevor Sie die Kommunikation konfigurieren.

GSD installieren (Seite 77) .

Wenn Sie die GSD installiert haben, konfigurieren Sie die Kommunikation. Beachten Sie dazu die Dokumentation Ihrer Steuerung.

3.7.4.3 GSD installieren

Vorgehensweise

- 1. Speichern Sie die GSD über einen der folgenden Methoden auf Ihrem PC.
 - Mit Internetzugang:
 - GSD (http://support.automation.siemens.com/WW/view/de/22339653/133100)
 - Ohne Internetzugang:

Stecken Sie eine Speicherkarte in den Umrichter.

Setzen Sie p0804 = 12.

Der Umrichter schreibt die GSD als gepackte Datei (*.zip) ins Verzeichnis /SIEMENS/SINAMICS/DATA/CFG auf die Speicherkarte.

- 2. Entpacken Sie die GSD-Datei auf Ihrem Rechner.
- 3. Importieren Sie die GSD in das Engineering-System der Steuerung.

Sie haben die GSD-Datei im Engineering-System der Steuerung installiert.

3.7.5 Adresse einstellen

Gültiger Adressbereich: 1 ... 125

Sie haben folgende Möglichkeiten zum Einstellen der Adresse:

• Mit dem Adress-Schalter auf der Control Unit

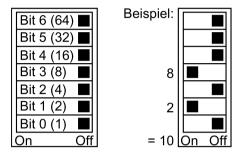


Bild 3-22 Adress-Schalter mit Beispiel für die Busadresse 10

Der Adress-Schalter hat Vorrang vor den anderen Einstellungen.

 Mit Startdrive oder einem Operator Panel über Parameter p0918 (Werkseinstellung: p0918 = 126)

p0918 ist nur änderbar, wenn im Adress-Schalter eine ungültige Adresse eingestellt ist.

Sichern Sie die Einstellungen netzausfallsicher, wenn Sie mit Startdrive arbeiten.

Die Position des Adress-Schalters finden Sie in der Betriebsanleitung des Umrichters.

Handbücher und technischer Support (Seite 232)

Geänderte Bus-Adresse aktivieren

Vorgehensweise

- 1. Stellen Sie die Adresse wie oben beschrieben ein.
- 2. Schalten Sie die Versorgungsspannung des Umrichters aus.
- 3. Warten Sie bis alle LED auf dem Umrichter dunkel sind.
- 4. Schalten Sie die Versorgungsspannung des Umrichters wieder ein.

Nach dem Einschalten sind Ihre Einstellungen wirksam.

Damit haben Sie die Bus-Adresse eingestellt.

3.8 Telegramm wählen

Voraussetzung

Sie haben in der Grundinbetriebnahme die Steuerung über PROFIBUS oder PROFINET gewählt.

Telegramme für SINAMICS-G120-Umrichter

Die nachfolgende Tabelle zeigt alle Telegramme für die G120-Umrichter.

Sie haben in Ihrem Umrichter die Liste der Telegramme zur Auswahl, die für Ihren Umrichter zur Verfügung stehen.

Wert p0922

- 1: Standard Telegramm 1, PZD-2/2 (Werkseinstellung, Ausnahmen: CU250D und CU250S)
- 2: Standard Telegramm 2, PZD-4/4
- 3: Standard Telegramm 3, PZD-5/9
- 4: Standard Telegramm 4, PZD-6/14
- 7: Standard Telegramm 7, PZD-2/2 (Werkseinstellung CU250D)
- 9: Standard Telegramm 9, PZD-10/5
- 20: Standard Telegramm 20, PZD-2/6
- 110: SIEMENS Telegramm 110, PZD-12/7
- 112: SIEMENS Telegramm 111, PZD-12/12
- 350: SIEMENS Telegramm 350, PZD-4/4
- 352: SIEMENS Telegramm 352, PZD-6/6
- 353: SIEMENS Telegramm 353, PZD-2/2, PKW-4/4
- 354: SIEMENS Telegramm 354, PZD-6/6, PKW-4/4
- 999: Freies Telegramm Telegramm erweitern / Signalverschaltung ändern (Seite 33) (Werkseinstellung CU250S)

Weitere Informationen zu den Telegrammen:

PROFIsafe-Telegrammauswahl

Die Einstellungen für die PROFIsafe-Telegrammauswahl sind im Funktionshandbuch "Safety Integrated" beschrieben.

Kommunikation über EtherNet/IP

EtherNet/IP ist ein Echtzeit-Ethernet und wird hauptsächlich in der Automatisierungstechnik verwendet.

Sie haben folgende Möglichkeiten, die SINAMICS G120-Umrichter in EtherNet/IP einzubinden:

- Sie nutzen das SINAMICS-Profil
- Sie nutzen das ODVA AC/DC Drive-Profil
- Sie legen die Assemblies für die Prozessdaten über die vom Umrichter unterstützten Objekte fest
- Kommunikation über EtherNet/IP konfigurieren (Seite 86).

Die folgenden Tabellen zeigen die Pinbelegung und die Stecker, die Sie für Ihren Umrichter benötigen.

Über die beiden Buchsen am Umrichter können Sie eine Linientopologie realisieren. Am Ende bzw. Anfang einer Linie benötigen Sie nur eine der beiden Buchsen.

Andere Topologien realisieren Sie mithilfe von Switches.

4.1 Umrichter mit EtherNet/IP-Schnittstelle

Tabelle 4- 1 Zuordnungstabelle

Umrichter/Control Unit	Anschluss über			
		X150 P1/ X150 P2 (RJ45)	X03/X04 (RJ45)	X03/X04 (M12)
		8 1	1 8	
	G120			
	• CU230P-2 PN	X		
	• CU240E-2 PN	х		
	• CU240E-2 PN-F	х		
	• CU250S-2 PN	Х		
	G120C			
	• G120C PN	X		
	G120D			
	• CU240D-2 PN			x
	• CU240D-2 PN-F			х
	• CU250D-2 PN-F			х
- Manager of the second	• CU240D-2 PN-F [PP]		х	
	• CU250D-2 PN-F [PP]		х	
50/3/	G110M			
	• CU240M PN			х

Tabelle 4-2 Pinbelegung der Stecker

Signal	X150 P1/ X150 P2 (RJ45)	X03/X04 (RJ45)	X03/X04 (M12)
	8 1	1 8	
TX-, Sendedaten -	1	1	1
RX+, Empfangsdaten +	3	2	2
TX+. Sendedaten +	2	3	3
RX-, Empfangsdaten -	6	6	4
	4	4	
	5	5	
	7	7	
	8	8	

Steckerempfehlung

RJ45, IP20: 6GK1901-1BB10-2Ax0

Montageanleitung für SIMATIC NET Industrial Ethernet FastConnect RJ45 Plug (https://support.industry.siemens.com/cs/ww/de/ps/15251/man)

4.2 Umrichter an EtherNet/IP anschließen

Um den Umrichter über Ethernet an eine Steuerung anzuschließen, gehen Sie folgendermaßen vor:

Vorgehensweise

- 1. Verbinden Sie den Umrichter über eine Ethernet-Leitung mit der Steuerung.
- 2. Sie erzeugen Sich ein Objekt zum Datenaustausch.

Dazu haben Sie folgende Möglichkeiten:

 Laden Sie die EDS-Datei in Ihre Steuerung wenn Sie das ODVA Profil nutzen möchten.

Die EDS-Datei finden Sie im Internet:

EDS (https://support.industry.siemens.com/cs/ww/de/view/78026217)

- Wenn Ihre Steuerung die EDS-Datei nicht akzeptiert oder Sie das SINAMICS Profil nutzen möchten, müssen Sie ein generisches Modul in Ihrer Steuerung erzeugen:
 - Generisches I/O-Modul erzeugen (Seite 103)

Sie haben den Umrichter über EtherNet/IP mit der Steuerung verbunden.

Eine ausführliche Beschreibung, einen SINAMICS G-Umrichter über Ethernet/IP an eine Steuerung anzubinden, finden Sie außerdem unter folgendem Link:

Anwendungsbeispiel (https://support.industry.siemens.com/cs/ww/de/view/82843076)

Verlegen und Schirmen der Ethernet-Leitung

Informationen hierzu finden Sie im Internet:

EtherNet/IP

(http://www.odva.org/Home/ODVATECHNOLOGIES/EtherNetIP/EtherNetIPLibrary/tabid/76/I ng/en-US/Default.aspx)

Inbetriebnahme des Umrichters in einem EtherNet/IP-Netz

Zur Inbetriebnahme des Umrichters, verbinden Sie den Umrichter über die USB-Schnittstelle mit Ihrem Rechner auf dem Startdrive installiert ist.

Weitere Informationen finden Sie in der Betriebsanleitung des Umrichters:

Handbücher und technischer Support (Seite 232)

4.3 Was brauchen Sie für die Kommunikation über EtherNet/IP?

Überprüfen Sie anhand der folgenden Fragen die Kommunikationseinstellungen. Wenn Sie die Fragen mit "Ja" beantworten können, haben Sie die Kommunikationseinstellungen richtig gesetzt und können den Umrichter über den Feldbus steuern.

- Ist der Umrichter richtig an EtherNet/IP angeschlossen?
- Ist die EDS-Datei in Ihrer Steuerung installiert?
- Sind die Bus-Schnittstelle und die IP-Adresse richtig gesetzt?
- Sind die Signale, die Umrichter und Steuerung austauschen, richtig verschaltet?

4.4 Kommunikation über EtherNet/IP konfigurieren

Um über EtherNet/IP mit einer überlagerten Steuerung zu kommunizieren, nehmen Sie folgende Einstellungen vor:

Vorgehensweise

- 1. p2030: stellen Sie den Wert 10 ein: Feldbus-SS Protokollauswahl Ethernet/IP
- 2. p8921: tragen Sie die IP-Adresse ein. Die aktuell gültige Adresse finden Sie in r8931.
- p8923: tragen Sie die Subnet Mask ein. Die aktuell gültige Subnet Mask finden Sie in r8933.
- 4. p8922: tragen Sie das Default Gateway ein. Das aktuell gültige Default Gateway finden Sie in r8932.
- 5. p8920: tragen Sie den Name of Station ein.
- 6. p8925: stellen Sie den Wert 2 ein: PN Schnittstellen-Konfiguration speichern und aktivieren
- 7. Schalten Sie die Versorgungsspannung des Umrichters aus.
- 8. Warten Sie, bis alle LED auf dem Umrichter dunkel sind.
- 9. Schalten Sie die Versorgungsspannung des Umrichters wieder ein. Nach dem Einschalten sind Ihre Einstellungen wirksam.

Damit ist der Umrichter für die Kommunikation über EtherNet/IP konfiguriert.

Die Parameter p8921 ... p8925 gelten, wenn p2030 = 10 gesetzt ist, für EtherNet/IP, auch wenn die Parameternamen auf PROFINET hindeuten.

4.4.1 Kommunikationseinstellungen

Die Kommunikation stellen Sie über den Parameter p8980 ein. Sie haben folgende Möglichkeiten

Kommunikation über das SINAMICS-Profil

Das SINAMICS-Profil ist ein von Siemens definiertes Antriebsprofil für EtherNet/IP auf der Basis von PROFIdrive und ist werksseitig im Umrichter voreingestellt.

Einstellung: p8980 = 0

Mit dem SINAMICS-Profil können Sie jedes der im Parameter p0922 aufgeführten Telegramme nutzen

Kommunikation über das ODVA AC/DC Drive-Profil

Das ODVA AC/DC Drive-Profil ist ein von der ODVA-Organisation definiertes Antriebsprofil Einstellung: p8980 = 1

Mit dem AC/DC-Profil der ODVA wählen Sie das Standardtelegramm, p0922 = 1

Kommunikationseinstellungen über EtherNet/IP-Objekte und Assemblies

Wenn Sie die Assemblies nutzen, die in "Unterstützte Objekte" beschriebenen sind (Unterstützte Objekte (Seite 88)), müssen Sie den Umrichter selbst in Ihre Steuerung integrieren. Details dazu finden sie in der Dokumentation zu Ihrer Steuerung.

4.4.2 Besonderheiten, wenn Sie das ODVA AC/DC Drive-Profil nutzen

Wenn Sie die folgenden Parameter über Startdrive oder ein Operator Panel ändern, müssen Sie die Versorgungsspannung des Umrichter Aus- und wieder Einschalten, damit die Änderungen wirksam werden.

Aus-Reaktion für den Motor einstellen

Über den Parameter p8981 stellen Sie die Standard-Aus-Reaktion für den Umrichter ein:

- p8981 = 0: AUS1 (Werkseinstellung) entspricht auch der Einstellung im SINAMICS-Profil
- p8981 = 1: AUS2

Details zu AUS1 und AUS2 finden Sie in der Betriebsanleitung der Control Unit im Abschnitt "Motor ein- und ausschalten".

Drehzahl- und Drehmomentskalierung einstellen

Über die Parameter p8982 bzw. p8983 skalieren Sie die Anzeige für Drehzahl und Drehmoment. Einstellbereich: 2⁵ bis 2⁻⁵.

Anzeige der maximal übertragenen Prozessdaten (PZD)

- r2067[0] maximal verschaltete PZD-Länge empfangen
- r2067[1] maximal verschaltete PZD-Länge senden

Umschalten der Steuerungshoheit vom Controller auf Startdrive

Um die Steuerungshoheit mit Startdrive holen zu können, müssen Sie entweder die CPU in STOP setzen oder die Verbindung zum Controller unterbrechen.

Übersicht

Objektkla	isse	Objekt-Name	Notwendige	ODVA-	SINAMICS-
hex	dez		Objekte	Objekte	Objekte
1 hex	1	Identity Object	х		
4 hex	4	Assembly Object	х		
6 hex	6	Connection Management Object	х		
28 hex	40	Motor Data Object		Х	
29 hex	41	Supervisor Object		Х	
2A hex	42	Drive Object		Х	
32C hex	812	Siemens Drive Object			х
32D hex	813	Siemens Motordata Object			х
F5 hex	245	TCP/IP Interface Object 1)	х		
F6 hex	246	Ethernet Link Object 1)	х		
300 hex	768	Stack Diagnostic Object		Х	х
302 hex	770	Adapter Diagnostic Object		Х	х
303 hex	771	Explicit Messages Diagnostic Object		Х	х
304 hex	772	Explicit Message Diagnostic List Object		Х	х
401 hex	1025	Parameter Object		Х	х

¹⁾ diese Objekte sind Teil des EtherNet/IP Systemmanagements.

Identity Object, Instance Number: 1 hex

Unterstützte Dienste

Klasse • Get Attribute all

• Get Attribute single

Instanz

- Get Attribute all
- Get Attribute single
- Reset

Tabelle 4-3 Class Attribute

Nr.	Dienst	Тур	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Tabelle 4-4 Instance Attribute

Nr.	Dienst	Тур	Name	Wert / Erläuterung
1	get	UINT16	Vendor ID 1251	
2	get	UINT16	Device Type - ODVA AC Drive - Siemens Drive	02 hex 12 hex
3	get	UINT16	Product code r0964[1]	
4	get	UINT16	Revision sollte zur Version des EDS-files passen	
5	get	UINT16	Status	siehe folgende Tabelle
6	get	UINT32	Seriennummer	bit 0 19: laufende Nummer; bit 20 23: Produktionskennung Bit 24 27: Herstellungsmonat (0 = Jan, B = Dez) Bit 28 31: Herstellungsjahr (0 = 2002)
7	get	Short String	Produktname	max. Länge 32 Byte z.B. SINAMICS G120

Tabelle 4-5 Erläuterung zu Nr. 5 der vorhergehenden Tabelle

Byte	Bit	Name	Beschreibung	
1	0	Owned	Umrichter ist keinem Master zugeordnet Umrichter ist einem Master zugeordnet	
	1		reserviert	
	2	Configured	Ethernet/IP-Grundeinstellungen geänderte Ethernet/IP-Einstellungen	
			bei G120 immer = 1	
	3		reserviert	
	4 7	Extended Device Status	0: Selbsttest oder Status nicht bekannt 1: Firmwareupdate aktiv 2: Mindestens eine fehlerhafte I/O-Verbindung 3: keine I/O-Verbindungen 4: falsche Konfiguration im ROM 5: Fataler Fehler 6: Mindestens eine I/O-Verbindung ist aktiv 7: alle I/O-Verbindung im Ruhezustand 8 15: reserviert	
2	8 11		nicht verwendet	
	12 15		reserviert	

Assembly Object, Instance Number: 4 hex

Unterstützte Dienste

Klasse • Get Attribute single Instanz • Get Attribute single

Tabelle 4-6 Class Attribute

Nr.	Dienst	Тур	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Tabelle 4-7 Instance Attribute

Nr.	Dienst	Тур	Name	Wert / Erläuterung
3	get	Array of UINT8	Assembly	1-Byte-Array Unterstützte ODVA AC/DC Assemblies (Seite 102)

Connection Management Object, Instance Number: 6 hex

Unterstützte Dienste

Klasse • Get Attribute all

Get Attribute single

Instanz

- Forward open
- Forward close
- Get Attribute single
- Set Attribute single

Tabelle 4-8 Class Attribute

Nr.	Dienst	Тур	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Tabelle 4-9 Instance Attribute

Nr.	Dienst	Тур	Name	Wert / Erläuterung
1	get	UINT16	OpenReqs	Zähler
2	get	UINT16	OpenFormat Rejects	Zähler
3	get	UINT16	OpenResource Rejects	Zähler
4	get	UINT16	OpenOther Rejects	Zähler
5	get	UINT16	CloseReqs	Zähler
6	get	UINT16	CloseFormat Rejects	Zähler
7	get	UINT16	CloseOther Rejects	Zähler
8	get	UINT16	ConnTimeouts	Zähler
				Zahl der Busfehler

Motor Data Object, Instance Number 28 hex

Unterstützte Dienste

Klasse • Get Attribute single Instanz • Get Attribute single

Tabelle 4- 10 Class Attribute

Nr.	Dienst	Тур	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Tabelle 4-11 Instance Attribute

Nr.	Dienst	Тур	Name	Wert / Erläuterung
3	get, set	USINT	Motor Type	p0300 Motor-Typ, siehe folgende Tabelle
6	get, set	UINT16	Rated Current	p0305 Motor-Bemessungsstrom
7	get, set	UINT16	Rated Voltage	p0304 Motor-Bemessungsspannung
8	get, set	UINT32	Rated Power	p0307 Motor-Bemessungsleistung
9	get, set	UINT16	Rated Frequency	p0310 Motor-Bemessungsfrequenz
10	get, set	UINT16	Rated Tempera- ture	p0605 Motortemperaturschwelle
11	get, set	UINT16	Max Speed	p0322 Motor-Maximaldrehzahl
12	get, set	UINT16	Pole Count	p0314 Wert von p0314*2
13	get, set	UINT32	Torque Constant	p0316 Motor-Drehmomentkonstante
14	get, set	UINT32	Inertia	p0341 Motor-Trägheitsmoment
15	get, set	UINT16	Base Speed	p0311 Motor-Bemessungsdrehzahl

Wert in p0	300	Etherr	Ethernet/IP Motor-Datenobjekt,		
0	kein Motor	0	Nicht-Standard-Motor		
1	Asynchronmotor	7	Käfigläufer-Induktionsmotor		
2	Synchronmotor	3	PM Synchronmotor		
10	1LE1 Asynchronmotor	7	Käfigläufer-Induktionsmotor		
13	1LG6 Asynchronmotor	7	Käfigläufer-Induktionsmotor		
17	1LA7 Asynchronmotor	7	Käfigläufer-Induktionsmotor		
19	1LA9 Asynchronmotor	7	Käfigläufer-Induktionsmotor		
100		7	Käfigläufer-Induktionsmotor		
104	1PH4 Asynchronmotor	3	PM Synchronous Motor		
107	1PH7 Asynchronmotor	0	Nicht-Standard-Motor		
108	1PH8 Asynchronmotor	5	Geschalteter Reluktanzmotor		
200	1PH8 Synchronmotor	0	Nicht-Standard-Motor		
204	1LE4 Synchronmotor	3	PM Synchronmotor		
237	1FK7 Synchronmotor	0	Nicht-Standard-Motor		
10000	Motor mit DRIVE-CLiQ	0	Nicht-Standard-Motor		
10001	Motor mit DRIVE-CLiQ 2. D	0	Nicht-Standard-Motor		

Supervisor Object, Instance Number: 29 hex

Unterstützte Dienste

Klasse • Get Attribute single Instanz • Get Attribute single

Tabelle 4- 12 Class Attribute

Nr.	Dienst	Тур	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Tabelle 4- 13 Instance Attribute

Nr.	Dienst	Тур	Name	Wert / Erläuterung	
3	get, set	Bool	Run1	STW.0 Betrieb, Rechtslauf	
5	get, set	Bool	Net Control	intern 0: Local 1: Netzwerk	
6	get	UINT8	State	0: Vendor Specific 1: Startup 2: Not_Ready 3: Ready 4: Enabled 5: Stopping 6: Fault_Stop 7: Faulted	
7	get	Bool	Running1	ZSW1:2 1: - (Enabled and Run1) or - (Stopping and Running1) or - (Fault_Stop and Running1) 0 = Other state	
9	get	Bool	Ready	ZSW1:0 1: - Ready or - Enabled or - Stopping 0 = Other state	
10	get	Bool	Fault	ZSW1:3 Antriebsfehler	
11	get	Bool	Warning	ZSW1:7 Warnung steht an	
12	get, set	Bool	Fault Reset	STW.7 Fehler quittieren	
13	get	UINT16	Fault Code	r945[0] Fehlercode	
14	get	UINT16	Warning Code	r2122[0] Warncode	
15	get	Bool	CtlFromNet	Anzeige von Net Control 1: Control from network 0: Local control	

Drive Object, Instance Number: 2A hex

Unterstützte Dienste

Klasse • Get Attribute single Instanz • Get Attribute single

Tabelle 4- 14 Class Attribute

Nr.	Dienst	Тур	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Tabelle 4- 15 Instance Attribute

Nr.	Dienst	Тур	Name	Wert / Erläuterung
3	get	Bool	At reference	r2197.4 1: n ist ≥ n soll
				0: sonst
4	get, set	Bool	Net_reference	intern
				0: Lokal 1: Netzwerk
6	get	UINT8	Drive_Mode	p1300 Herstellerspezifisch, siehe folgende Tabelle
7	get	INT	Speed Actual	Hauptistwert, siehe Drehzahleinheiten
8	get, set	INT	Speed Ref	Hauptsollwert, siehe Drehzahleinheiten
9	get	INT	Current Actual	r0027 Stromistwert Betrag geglättet
10	get, set	INT	Current limit	p0323 Motor-Maximalstrom
15	get	INT	Power Actual	r0032 Wirkleistungsistwert geglättet
16	get	INT	Input voltage	r0025 Ausgangsspannung geglättet
17	get	INT	Output voltage	r0072 Ausgangsspannung
18	get, set	UINT16	AccelTime	p1120 Hochlaufgeber Hochlaufzeit
19	get, set	UINT16	DecelTime	p1121 Hochlaufgeber Rücklaufzeit
20	get, set	UINT16	Low Speed Lim	p1080 Minimaldrehzahl
21	get, set	UINT16	High Speed Lim	p1082 Maximaldrehzahl
22	get, set	SINT	Speed Scale	p8982 Ethernet/IP ODVA Drehzahl Skalierung
29	get	Bool	Ref From Net	intern - Anzeige von Net_Reference
				0: Lokal
				1: Netzwerk

Wert	in p1300	Ethe	Ethernet/IP Motor-Datenobjekt		
0	U/f mit linearer Charakteristik	1	Open loop speed (Frequency)		
1	U/f mit linearer Charakteristik und FCC	0	Vendor specific mode		
2	U/f mit parabolischer Charakteristik	0	Vendor specific mode		
3	U/f mit parametrierbarer Charakteristik	0	Vendor specific mode		
4	U/f mit linearer Charakteristik und ECO	0	Vendor specific mode		
5	U/f für frequenzgenauen Antrieb (Textilbereich)	0	Vendor specific mode		
6	U/f für frequenzgenauen Antrieb und FCC	0	Vendor specific mode		
7	U/f für parabolische Charakteristik und ECO	0	Vendor specific mode		
19	U/f mit unabhängigem Spannungssollwert	0	Vendor specific mode		
20	Drehzahlregelung (geberlos)	2	Closed loop speed control		
22	Drehmomentregelung (geberlos)	3	Torque control		

Siemens Drive Object, Instance Number: 32C hex

Unterstützte Dienste

Klasse • Get Attribute single

Instanz

- Get Attribute single
- Set Attribute single

Tabelle 4- 16 Class Attribute

Nr.	Dienst	Тур	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Tabelle 4- 17 Instance Attribute

Nr.	Dienst	Name	Wert / Erläuterung
2	get, set	Commissioning state	p0010 Inbetriebnahme Parameterfilter
3 18	get	STW1	STW1 Zugriff bitweise: Attr.3 = STW1.0 Attr.18 = STW1.15
19	get	Main setpoint	Hauptsollwert
20 35	get	ZSW1	ZSW1Zugriff bitweise: Attr.20 = ZSW1.0 Attr.35 = ZSW1.15
36	get	Actual Frequency	Hauptistwert (Istfrequenz)
37	get, set	Ramp Up Time	p1120[0] Hochlaufgeber Hochlaufzeit
38	get, set	Ramp Down Time	p1121[0] Hochlaufgeber Rücklaufzeit
39	get, set	Current Limit	p0640[0] Stromgrenze
40	get, set	Frequency MAX Limit	p1082[0] Maximaldrehzahl
41	get, set	Frequency MIN Limit	p1080[0] Minimaldrehzahl
42	get, set	OFF3 Ramp Down Time	p1135[0] AUS3 Rücklaufzeit
43	get, set	PID Enable	p2200[0] Technologieregler Freigabe

Nr.	Dienst	Name	Wert / Erläuterung
44	get, set	PID Filter Time Constant	p2265 Technologieregler Istwertfilter Zeitkonstante
45	get, set	PID D Gain	p2274 Technologieregler Differentiation Zeitkonstante
46	get, set	PID P Gain	p2280 Technologieregler Proportio- nalverstärkung
47	get, set	PID I Gain	p2285 Technologieregler Nachstellzeit
48	get, set	PID Up Limit	p2291 Technologieregler Maximalbe- grenzung
49	get, set	PID Down Limit	p2292 Technologieregler Minimalbe- grenzung
50	get	Speed setpoint	r0020 Drehzahlsollwert
51	get	Output Frequency	r0024 Ausgangsfrequenz
52	get	Output Voltage	r0025 Ausgangsspannung
53	get	DC Link Voltage	r0026[0] Zwischenkreisspannung
54	get	Actual Current	r0027 Stromistwert
55	get	Actual Torque	r0031 Drehmomentistwert
56	get	Output Power	r0032 Wirkleistungsistwert
57	get	Motor Temperature	r0035[0] Motortemperatur
58	get	Power Unit Tempera- ture	r0037[0] Leistungsteil Temperatur
59	get	Energy kWh	r0039 Energieanzeige
60	get	CDS Eff (Local Mode)	r0050 wirksamer Befehlsdatensatz
61	get	Status Word 2	r0053 Zustandswort 2
62	get	Control Word 1	r0054 Steuerwort 1
63	get	Motor Speed (Encoder)	r0061 Drehzahlistwert
64	get	Digital Inputs	r0722 Digitaleingänge Status
65	get	Digital Outputs	r0747 Digitalausgänge Status
66	get	Analog Input 1	r0752[0] Analogeingang 1
67	get	Analog Input 2	r0752[1] Analogeingang 2
68	get	Analog Output 1	r0774[0] Analogausgang 1
69	get	Analog Output 2	r0774[1] Analogausgang 2
70	get	Fault Code 1	r0947[0] Störnummer 1
71	get	Fault Code 2	r0947[1] Störnummer 2
72	get	Fault Code 3	r0947[2] Störnummer 3
73	get	Fault Code 4	r0947[3] Störnummer 4
74	get	Fault Code 5	r0947[4] Störnummer 5
75	get	Fault Code 6	r0947[5] Störnummer 6
76	get	Fault Code 7	r0947[6] Störnummer 7
77	get	Fault Code 8	r0947[7] Störnummer 8
78	get	Pulse Frequency	r1801 Pulsfrequency
79	get	Alarm Code 1	r2110[0] Warnnummer 1
80	get	Alarm Code 2	r2110[1] Warnnummer 2

Nr.	Dienst	Name	Wert / Erläuterung		
81	get	Alarm Code 3	r2110[2] Warnnummer 3		
82	get	Alarm Code 4	r2110[3] Warnnummer 4		
83	get	PID setpoint Output	r2260 Technologieregler Sollwert nach Hochlaufgeber		
84	get	PID Feedback	r2266 Technologieregler Istwert nach Filter		
85	get	PID Output	r2294 Technologieregler Ausgangs- signal		

Siemens Motor Data Object, Instance Number: 32D hex

Unterstützte Dienste

Klasse • Get Attribute single Instanz • Get Attribute single

Tabelle 4- 18 Class Attribute

Nr.	Dienst	Тур	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Tabelle 4- 19 Instance Attribute

Nr.	Dienst	Тур	Name	Wert / Erläuterung
2	get, set	UINT16	Commissioning state	p0010
3	get	INT16	Motor Type	p0300
6	get, set	REAL	Rated Current	p0305
7	get, set	REAL	Rated Voltage	p0304
8	get, set	REAL	Rated Power	p0307
9	get, set	REAL	Rated Frequency	p0310
10	get, set	REAL	Rated Tempera- ture	p0605
11	get, set	REAL	Max Speed	p0322
12	get, set	UINT16	Pole pair number	p0314
13	get, set	REAL	Torque Constant	p0316
14	get, set	REAL	Inertia	p0341
15	get, set	REAL	Base Speed	p0311
19	get, set	REAL	Cos Phi	p0308

TCP/IP Interface Object, Instance Number: F5 hex

Unterstützte Dienste

Klasse • Get Attribute all

• Get Attribute single

Instanz

- Get Attribute all
- Get Attribute single
- Set Attribute single

Tabelle 4-20 Class Attribute

Nr.	Dienst	Тур	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Tabelle 4-21 Instance Attribute

Nr.	Dienst	Тур	Name	Wert / Erläuterung			
1	get	UNIT32	Status	Festwert: 1 hex 1: Konfiguration bestätigt, durch DHCP oder gespeicherte Werte			
2	get	UNIT32	Configuration Capability	Festwert: 94 hex 4 hex: DHCP unterstützt, 10 hex: Konfiguration einstellbar, 80 hex: ACD-fähig			
3	get, set	UNIT32	Configuration Control	1 hex: gespeicherte Werte 3 hex: DHCP			
4	get	UNIT16	Path Size (in WORDs)	Festwert: 2 hex			
		UNIT8	Path	20 hex, F6 hex, 24 hex, 05 hex wobei 5 hex die Zahl der Instanzen von F6 hex ist (vier physikalische Ports plus ein interner Port).			
5	get, set	STRING	Interface Confi-	r61000 Name of Station			
		UNIT32	guration	r61001 IP-Adresse			
6	get, set	UNIT16	Host Name	Host Name Length			
		STRING					
10	get, set	UNIT8	Select ACD	local OM flash : 0: Disabled, 1: Enabled			
11	get, set	UNIT8	Last Conflict	local OM flash ACD Activity			
		UNIT8	Detected	local OM flash Remote MAC			
		UNIT8		local OM flash ARP PDU			

Link Object, Instance Number: F6 hex

Unterstützte Dienste

Klasse • Get Attribute all

• Get Attribute single

Instanz

- Get Attribute all
- Get Attribute single
- Set Attribute single

Tabelle 4- 22 Class Attribute

Nr.	Dienst	Тур	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Tabelle 4-23 Instance Attribute

Nr.	Dienst	Тур	Name	Wert / Erläuterung
1	get	UINT32	Interface Speed	0: link down, 10: 10 Mbps, 100: 100 Mbps
2	get		Interface Flags	Bit 1: Link-Status Bit 2: Duplex Mode (0: halb duplex, 1 duplex Bit 3 5: automatische Zustandserkennung Bit 6: Reset erforderlich Bit 7: Lokaler Hardwarefehler (0 = ok)
3	get	ARRAY	Physical Address	r8935 Ethernet MAC address
4	get_and_ clear	Struct of	Interface Counters	Optional, erforderlich, wenn das "Media Counters attribute" implementiert ist.
		UINT32	In Octets	empfangene Octets
		UINT32	In Ucast Packets	Empfangene Unicast-Pakete
		UINT32	In NUcast Pa- ckets	Empfangene Nicht-Unicast-Pakete
		UINT32	In Discards	eingehende Pakete, nicht bearbeitet
		UINT32	In Errors	Eingehende Pakete mit Fehlern
		UINT32	In Unknown Protos	Eingehende Pakete mit unbekanntem Protokoll
		UINT32	Out Octets	Gesendete octets
		UINT32	Out Ucast Pa- ckets	Gesendete Unicast-Pakete
		UINT32	Out NUcast Pa- ckets	Gesendete Nicht-Unicast-Pakete
		UINT32	Out Discards	abgehende Pakete, nicht bearbeitet
		UINT32	Out Errors	abgehende Pakete, mit Fehlern
5	get_and_	Struct of	Media Counters	Medienspezifische Zähler
	clear	UINT32	Alignment Errors	Struktur empfangen, die nicht zu Zahl der Octets passt

Nr.	Dienst	Тур	Name	Wert / Erläuterung
		UINT32	FCS Errors	Struktur empfangen, die den FCS-Check nicht besteht
		UINT32	Single Collisions	Struktur erfolgreich übertragen, genau eine Kollsion
		UINT32	Multiple Collisions	Struktur erfolgreich übertragen, mehrere Kollsionen
		UINT32	SQE Test Errors	Zahl der SQE-Fehler
		UINT32	Deferred Trans- missions	Erster Übertragungsversuch verzögert
		UINT32	Late Collisions	Anzahl der Kollisionen, welche um 512 Bit-Zeiten verzögert zum Auftrag aufgetreten sind
	UINT32		Excessive Collisions	Übertragung schlägt fehl, aufgrund intensiver Kollision
		UINT32	MAC Transmit Errors	Übertragung schlägt fehl, aufgrund eines internen MAC-Sublayer Übertragungsfehlers.
		UINT32	Carrier Sense Errors	Times that the carrier sense condition was lost or never asserted when attempting to transmit a frame
		UINT32	Frame Too Long	Struktur zu groß
		UINT32	MAC Receive Errors	Senden schlägt fehl, aufgrund eines internen MAC- Sublayer Empfangsfehlers.
6	get, set	Struct of	Interface Control	
		UINT16	Control Bits	
		UINT16	Forced Interface Speed	
10	get	String	Interface_Label	Interface-Label

Parameter Object, Instance Number: 401 hex

Unterstützte Dienste

Klasse • Get Attribute all Instanz • Get Attribute all

• Set Attribute single

Tabelle 4-24 Class Attribute

Nr.	Dienst	Тур	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Über das Parameterobjekt 401 erfolgt die zyklische Kommunikation.

Beispiel: Parameter 2050[10] lesen (Konnektorausgang zum Verschalten der vom Feldbus-Controller empfangenen PZD)

Funktion Get Attribute single mit folgenden Werten:

- Klasse = 401 hex
- Instanz = 2050 = 802 hex ≙ Parameternummer

Beispiel: Parameter 1520[0] schreiben (Drehmomentgrenze oben)

Funktion Set Attribute single mit folgenden Werten:

- Klasse = 401 hex
- Instanz = 1520 = 5F0 hex ≙ Parameternummer
- Data = 500.0 (Wert)

4.5.1 Unterstützte ODVA AC/DC Assemblies

Übersicht

Nummer		erforderlich/	Туре	Name
hex	dez	optional		
14 hex	20	erforderlich	senden	Basic Speed Control Output
46 hex	70	erforderlich	empfangen	Basic Speed Control Input

Assembly Basic Speed Control, Instance Number: 20, type: Output

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0						Fault Reset		RUN Forward	
1									
2	Speed Reference (Low Byte)								
3	Speed Reference (High Byte)								

Assembly Basic Speed Control, Instance Number: 70, type: Input

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0						Running Forward		Faulted		
1										
2	Speed Actual (Low Byte)									
3	Speed Actual (High Byte)									

4.6 Generisches I/O-Modul erzeugen

Für bestimmte Steuerungen, oder wenn Sie das SINAMICS-Profil nutzen möchten, können Sie die von Siemens zur Verfügung gestellte EDS-Datei nicht verwenden. In diesen Fällen müssen Sie in der Steuerung ein generisches I/O-Modul für die zyklische Kommunikation erstellen.

Vorgehensweise

- 1. Erzeugen Sie in Ihrer Steuerung ein generisches Device mit Ethernet/IP-Funktionalität.
- 2. Tragen Sie in der Steuerung in das neue Device die Längen für die Prozessdaten zur zyklischen Kommunikation ein, die Sie in Startdrive ausgewählt haben, r2067[0] (Input), r2067[1] (Output), z. B.: Standardtelegramm 2/2. Als minimaler Wert für RPI (Requested Packet Interval) werden 4 ms unterstützt.
- 3. Stellen Sie in Startdrive die gleichen Werte für IP-Adresse, Subnet-Mask, Default Gateway und Name of Station ein, wie in der Steuerung.
 - Kommunikation über EtherNet/IP konfigurieren (Seite 86).

Sie haben ein generisches I/O-Modul für die zyklische Kommunikation mit dem Umrichter erstellt.

Eine ausführliche Beschreibung zum Erstellen eines generischen I/O-Moduls finden Sie außerdem unter folgendem Link:

EDS-Datei erzeugen (http://support.automation.siemens.com/WW/view/de/82843076)

4.7 Der Umrichter als Ethernet-Teilnehmer

Den Umrichter ins Ethernet-Netzwerk einbinden (IP-Adresse vergeben)

Vorgehensweise

- 1. Setzen Sie p8924 (PN DHCP Mode) = 2 oder 3
 - p8924 = 2: IP-Adressvergabe durch den DHCP-Server anhand der MAC-Adresse des Umrichters.
 - p8924 = 3: IP-Adressvergabe durch den DHCP-Server anhand des Ger\u00e4tenamens des Umrichters.
- Speichern Sie die Einstellungen mit p8925 = 2. Beim n\u00e4chsten Einschalten holt sich der Umrichter die IP-Adresse, und Sie k\u00f6nnen den Umrichter als Ethernet-Teilnehmer ansprechen.

Hinweis

Sofortige Umstellung ohne Neustart

Die Umstellung auf DHCP erfolgt sofort und ohne Neustart, wenn Sie die Änderung mit dem EtherNet/IP Kommando "Set Attribute Single" (Klasse F5 hex, Attribut 3) durchführen. Sie haben dazu folgende Möglichkeiten:

- über eine EtherNet/IP-Steuerung
- über ein EtherNet/IP-Inbetriebnahmetool

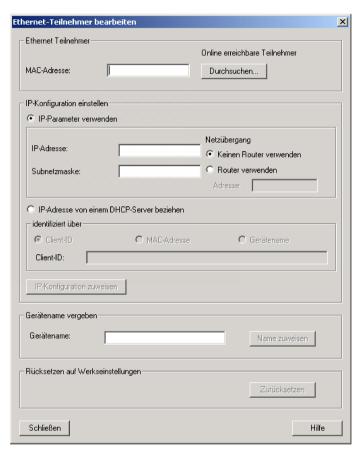
Damit haben Sie den Umrichter in Ethernet integriert.

Anzeigen

r8930: Gerätename des Umrichter r8934: Betriebsart, PN oder DHCP

r8935: MAC-Adresse

Zusätzliche Informationen


Erläuterungen zu den Parametern und Meldungen (A08565) finden Sie im Listenhandbuch des Umrichters

Weitere Möglichkeiten, den Umrichter in Ethernet zu integrieren

Sie haben auch die Möglichkeit, den Umrichter z. B. über Proneta oder STEP7 in Ethernet zu integrieren.

Anbei als Beispiel die Maske "Ethernet-Teilnehmer bearbeiten" aus Step7, über die Sie die erforderlichen Einstellungen vornehmen können.

Die erforderlichen Einstellungen, für den Umrichte als Ethernet-Teilnehmer finden Sie in Der Umrichter mit PROFINET-Schnittstelle als Ethernet-Teilnehmer (Seite 70).

4.7 Der Umrichter als Ethernet-Teilnehmer

Tabelle 5- 1 Zuordnungstabelle - Feldbussysteme über RS485

Umrichter/Control Unit			Feldbusan	schluss für	
		USS	Modbus RTU	BACnet MS/TP	P1
	G120				
	CU230P-2 HVAC	✓	✓	✓	✓
	• CU230P-2 BT	✓	✓	✓	✓
	• CU240B-2	✓	✓		
	• CU240E-2	✓	✓		
	• CU240E-2 F	✓	✓		
	• CU250S-2	✓	✓		
	G120C				
	G120C USS/MB	~	√		
32/1	G110M				
	CU240M USS	√	✓		

5.1 Umrichter mit RS485-Schnittstelle

In den folgenden Tabellen finden Sie die Stecker und die Steckerbelegung der RS485-Schnittstelle.

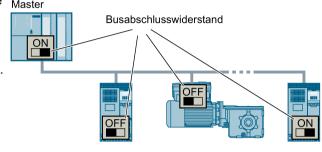
Tabelle 5-2 Zuordnungstabelle

Umrichter/Control Unit			Anschluss über	
		X128 @ @ @ @ @ 1 5	X03, In (M12)	X04, Out (M12) 2 (1 (5 (3) 4)
-	G120			
	• CU230P-2 HVAC	х		
	• CU230P-2 BT	х		
	• CU240B-2	х		
· ·	• CU240E-2	х		
	• CU240E-2 F	х		
	• CU250S-2	Х		
333	G120C			
	G120C USS/MB	x		
	G110M			
	CU240M USS		х	х

Tabelle 5-3 Pinbelegung

Signal	X128	X03, In (M12)	X04, Out (M12) 2 (1 § 3) 4
nicht belegt	5	1/3	1/3
RS485N, Empfangen und Senden (-)	3		
RS485N, Empfangen		2	
RS485N, Senden (-)			2
RS485P, Empfangen und Senden (+)	2		
RS485P, Empfangen		4	
RS485P, Senden (+)			4
0 V, Bezugspotenzial	1	5	5
Leitungsschirm	4		

5.2 Umrichter über die RS485-Schnittstelle in ein Bus-System integrieren


Anbindung an ein Netzwerk über RS485

Verbinden Sie den Umrichter über die RS485-Schnittstelle mit dem Feldbussystem.

Die Anschlüsse des RS485-Steckers sind kurzschlussfest und potenzialfrei.

Für den ersten und den letzten Teilnehmer müssen Sie den Busabschluss-Widerstand zuschalten.

Die Position der RS485-Steckers und des Busabschluss-Widerstands finden Sie in der Betriebsanleitung des Umrichters, bzw. der Control Unit.

Voraussetzung für eine fehlerfreie Kommunikation ist, dass der erste und letzte Teilnehmer mit Spannung versorgt sind.

Die Kommunikation bleibt erhalten, wenn Sie einzelne Slaves aus dem Bus herausnehmen, ohne die Leitung zu unterbrechen (nicht möglich bei Umrichtern mit hoher Schutzart).

Kommunikation mit der Steuerung, auch bei abgeschalteter Netzspannung

Wenn in Ihrer Anlage die Kommunikation mit der Steuerung auch bei abgeschalteter Netzspannung weiter laufen soll, müssen Sie den Umrichter / die Control Unit extern mit DC 24 V versorgen. Verwenden Sie dazu die Klemmen 31 und 32, bzw. den Stecker X01. Weitere Details finden Sie in der Betriebsanleitung des Umrichters, bzw. der Control Unit.

5.3 Kommunikation über USS

Das USS-Protokoll ist eine serielle Datenverbindung zwischen einem Master und einem bis zu maximal 31 Slaves.

Ein Master ist z. B.:

- Eine speicherprogrammierbare Steuerung (z. B. SIMATIC S7-200)
- Ein PC

Der Umrichter ist immer ein Slave.

Die maximale Leitungslänge beträgt:

- 1200 m bei einer Baudrate bis 38400 bit/s und maximal 32 Teilnehmern
- 1000 m bei einer Baudrate von 187500 bit/s und maximal 30 Teilnehmern

Weitere Informationen zum Anschließen des Umrichters an den USS-Feldbus:

Umrichter über die RS485-Schnittstelle in ein Bus-System integrieren (Seite 110).

5.3.1 Grundeinstellungen für die Kommunikation

Übersicht

Um die Kommunikation über USS einzustellen, haben Sie je nach Umrichter folgende Möglichkeiten zur Auswahl:

- Für alle Umrichter mit RS485-Schnittstelle 21 "USS Fieldbus"
- Für Umrichter mit einer CU230P-2 HVAC / CU230P-2 BT 108 "BT Mac 8: USS Fieldbus"

Weitere Informationen finden Sie in der Betriebsanleitung Ihres Umrichters.

Übersicht der Handbücher (Seite 232).

Vorgehenweise mit der Voreinstellung 21 "USS Fieldbus"

Um die Kommunikation über USS einzustellen, gehen Sie folgendermaßen vor:

- 1. Aktivieren Sie die Kommunikation über die RS485-Schnittstelle über eine der folgenden Möglichkeiten:
 - mit Startdrive bei der Inbetriebnahme im Schritt "Voreinstellungen der Sollwerte/Befehlsquellen":

21: USS Fieldbus

- mit dem BOP-2 bei der Grundinbetriebnahme unter Schritt "MAc PAr P15": FB USS
- über die Parameternummer: p0015 = 21
- 2. Stellen Sie das Busprotokoll über p2030 ein: p2030 = 1

5.3 Kommunikation über USS

- 3. Stellen Sie die Umrichteradresse ein.
- 4. Weitere Anpassungen nehmen Sie anhand der im folgenden Absatz aufgelisteten Parameter vor.
- 5. Sichern Sie die Einstellungen netzausfallsicher, wenn Sie mit Startdrive arbeiten.

Damit haben Sie die Kommunikation über USS eingestellt. □

5.3.1.1 Adresse einstellen

Gültiger Adressbereich: 0 ... 31

Sie haben folgende Möglichkeiten zum Einstellen der Adresse:

• Mit dem Adress-Schalter auf der Control Unit

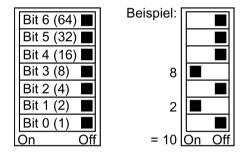


Bild 5-1 Adress-Schalter mit Beispiel für die Busadresse 10

Der Adress-Schalter hat Vorrang vor den anderen Einstellungen.

 Mit Startdrive oder einem Operator Panel über Parameter p2021 (Werkseinstellung: p2021 = 0)

p2021 ist nur änderbar, wenn im Adress-Schalter eine ungültige Adresse eingestellt ist.

Sichern Sie die Einstellungen netzausfallsicher, wenn Sie mit Startdrive arbeiten.

Die Position des Adress-Schalters finden Sie in der Betriebsanleitung des Umrichters.

Geänderte Bus-Adresse aktivieren

Vorgehensweise

- 1. Stellen Sie die Adresse wie oben beschrieben ein.
- 2. Schalten Sie die Versorgungsspannung des Umrichters aus.
- 3. Warten Sie bis alle LED auf dem Umrichter dunkel sind.
- 4. Schalten Sie die Versorgungsspannung des Umrichters wieder ein.

Nach dem Einschalten sind Ihre Einstellungen wirksam.

Damit haben Sie die Bus-Adresse eingestellt.

5.3.1.2 Parameter zum Einstellen der Kommunikation über USS

Feldbus Protokollauswahl p2030 = 1 (USS)

Baudrate p2020 = 8, 38400 bit/s

Einstellbereich: 2400 bit/s ... 187500 bit/s

Feldbus Analogausgänge p0791[0 ... 1]

Parameter zum Verschalten der Analogausgänge für die Ansteuerung über den Feldbus

Feldbus-SS USS PZD Anzahl p2022 = 2

Einstellen der Anzahl der 16-Bit-Wörter im PZD-Teil des USS-Telegramms Einstellbereich: 0 ... 8 (0 ... 8 Wörter)

Feldbus-SS USS PKW Anzahl, p2023 = 127

Einstellen der Anzahl der 16-Bit-Wörter im PKW-Teil des USS-Telegramms Einstellbereich:

- 0, 3, 4: feste Länge mit 0, 3 oder 4 Worten
- 127: variable Länge

Feldbus Fehlerstatistik r2029

Anzeige von Empfangsfehlern an der Feldbus-Schnittstelle

Feldbus-Überwachungszeit p2040 = 100 ms

Einstellbereich: 0 ms ... 1999999 ms

Die Feldbus-Überwachungszeit muss umso größer sein, je mehr Slaves am Netz hängen.

Wenn innerhalb von einem Zyklus der Feldbus-Überwachungszeit keine Prozessdaten übertragen werden, schaltet der Umrichter mit Störung F01910 ab.

p2040 = 0 ⇒ Busüberwachung abgeschaltet.

5.3.2 Telegrammstruktur

Übersicht

Ein USS-Telegramm besteht aus einer Folge von Elementen mit einer festgelegten Reihenfolge. Jedes Element enthält 11 Bits.

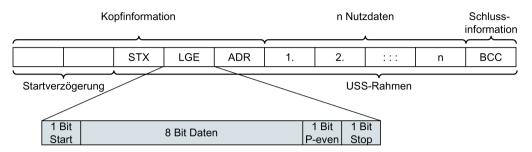


Bild 5-2 Struktur eines USS-Telegramms

Telegrammteil	Beschreibung							
Startverzögerung / Antworverzögerung	Zwischen zwei Telegrammen kommt immer die Start-, bzw.Antwortverzögerung. Telegramm-Überwachung (Seite 123)							
STX	Ein ASCII-Zeichen (02 hex) zeigt den Beginn der Nachricht an.							
LGE	Die Telegrammlänge "LGE" berechnet sich wie folgt: LGE = Nutzdaten (n Byte) + ADR (1 Byte) + BCC (1 Byte)							
ADR	7 6 5 4 3 2 1 0 Sondertele-gramm gramm Bit Adresse • Bit 7 = 0: normaler Datenaustausch. Bit 7 = 1 Zum Übertragen von Telegrammen, die einen vom Geräteprofil abweichenden Nutzdatenaufbau erfordern. • Bit 6 = 0: normaler Datenaustausch. Bit 6 = 1: Test der Busverbindung: der Umrichter gibt das Telegramm unverändert wieder an den Master zurück. • Bit 5 = 0: normaler Datenaustausch. (Bit 5 = 1: im Umrichter nicht unterstützt.) • Bit 0 4: Adresse des Umrichters.							
Nutzdaten	Nutzdatenbereich des USS-Telegramms (Seite 115).							
BCC	Prüfsumme (Exklusiv-Oder) über alle Telegramm-Bytes außer BCC.							

5.3.3 Nutzdatenbereich des USS-Telegramms

Der Nutzdatenbereich besteht aus den folgenden Elementen:

- Parameterkanal (PKW) zum Schreiben und Lesen von Parameterwerten
- Prozessdaten (PZD) zum Steuern des Antriebs.

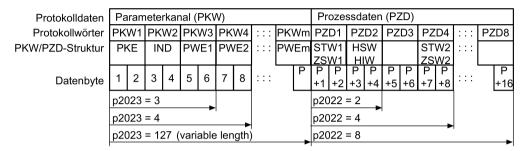


Bild 5-3 USS-Telegramm - Nutzdatenstruktur

Parameterkanal

Im Parameter p2023 legen Sie länge des Parameterkanals fest.

Parameterkanal mit fester und variabler Länge

- p2023 = 0
 Bei dieser Einstellung werden keine Parameterwerte übertragen.
- p2023 = 3
 Diese Einstellung k\u00f6nnen Sie w\u00e4hlen, wenn Sie nur 16-Bit-Daten oder Alarmmeldungen lesen oder schreiben wollen.
- p2023 = 4:
 Wenn Sie 32-Bit-Werte (z. B. indizierte Parameter oder Bit-Parameter, z. B. r0722.2)
 lesen oder schreiben möchten, ist diese Einstellung erforderlich. In diesem Fall enthält
 das Sende- oder Empfangstelegramm immer 4 Worte, auch wenn nur 3 benötigt würden.
 Die Werte werden rechstbündig ins 4. Wort eingetragen.
- p2023 = 127:
 Wenn Sie p2023 = 27 (variable Länge) einstellen, sind die Sende- und Antworttelegramme genau so lang, wie es die Aufgabe erfordert.

Prozessdaten

Der Parameter p2022 legt die Länge für die Prozessdaten fest. Sie können bis zu 8 Prozessdaten in einem Telegramm übertragen (p2022 = 0 ... 8). Bei p2022 = 0 werden keine Prozessdaten übertragen.

5.3.4 USS-Parameterkanal

Aufbau des Parameterkanals

Der Parameterkanal hat, je nach der Einstellung im p2023, eine feste Länge von drei oder vier Worten oder eine variable Länge, abhängig von der Länge der zu übertragenden Daten.

1. und 2. Wort enthalten Parameternummer, Index und die Art des Auftrags (lesen oder schreiben). Die weiteren Worte des Parameterkanals enthalten Parameterinhalte. Parameterinhalte können 8-Bit-Werte, 16-Bit-Werte (z. B. Baudrate), oder 32-Bit-Werte (z. B. CO-Parameter) sein. Die Parameterinhalte werden rechtsbündig in das Wort mit der höchsten Nummer eingetragen. Nicht benötigte Wörter werden mit 0 belegt.

Bit 11 im 1. Wort ist reserviert und immer mit 0 belegt.

Das Bild zeigt einen Parameterkanal mit vier Worten Länge.

Parameterkanal								
PKE (1	I. Wort)	IND (2. Wort)		PWE (3. und 4. Wort)				
1512 11	10 0	15 8	7 0	15 0	15 0			
AK S	PNU	Seitenindex	Subindex	PWE 1, High Word	PWE 2, Low Word			
Р								
M								

Telegrammbeispiele finden Sie am Ende dieses Abschnitts.

AK: Anforderungs- und Antwortkennungen

Die Bits 12 ... 15 des 1. Wortes des Parameterkanals enthalten die Anforderungs- und Antwortkennung AK.

Tabelle 5-4 Anforderungskennungen Steuerung → Umrichter

AK	Beschreibung	Antwortkennung		
		positiv	negativ	
0	keine Anforderung	0	7 / 8	
1	Anforderung Parameterwert	1/2	7 / 8	
2	Änderung Parameterwert (Wort)	1	7/8	
3	Änderung Parameterwert (Doppelwort)	2	7 / 8	
4	Anforderung beschreibendes Element 1)	3	7/8	
6 ²⁾	Anforderung Parameterwert (Feld) 1)	4/5	7 / 8	
7 2)	Änderung Parameterwert (Feld, Wort) 1)	4	7 / 8	
8 2)	Änderung Parameterwert (Feld, Doppelwort) 1)	5	7 / 8	
9	Anforderung Anzahl der Feldelemente	6	7/8	

¹⁾ Das gewünschte Element des Parameters ist in IND (2. Wort) spezifiziert.

²⁾ Folgende Anforderungskennungen sind identisch: $1 \equiv 6$, $2 \equiv 7$ $3 \equiv 8$. Wir empfehlen Kennungen 6, 7 und 8 zu verwenden.

Tabelle 5- 5 Antwortkennungen Umrichter → Steuerung

AK	Beschreibung
0	keine Antwort
1	Übertrage Parameterwert (Wort)
2	Übertrage Parameterwert (Doppelwort)
3	Übertrage beschreibendes Element 1)
4	Übertrage Parameterwert (Feld, Wort) ²⁾
5	Übertrage Parameterwert (Feld, Doppelwort) 2)
6	Übertrage Anzahl der Feldelemente
7	Umrichter kann Anforderung nicht bearbeiten. Der Umrichter sendet im höchsten Wort des Parameterkanals eine Fehlernummer an die Steuerung, siehe folgende Tabelle.
8	Kein Mastersteuerungs-Status / keine Berechtigung zur Parameteränderung der Parameterkanal-Schnittstelle

¹⁾ Das gewünschte Element des Parameters ist in IND (2. Wort) spezifiziert.

²⁾ Das gewünschte Element des indizierten Parameters ist in IND (2. Wort) spezifiziert.

5.3 Kommunikation über USS

Tabelle 5-6 Fehlernummern bei Antwortkennung 7

Nr.	Beschreibung
00 hex	Unzulässige Parameternummer (Zugriff auf nicht vorhandenen Parameter.)
01 hex	Parameterwert nicht änderbar (Änderungsauftrag für einen nicht änderbaren Parameterwert.)
02 hex	Untere oder obere Wertgrenze überschritten (Änderungsauftrag mit Wert außerhalb der Wertgrenzen.)
03 hex	Fehlerhafter Subindex (Zugriff auf nicht vorhandenen Subindex)
04 hex	Kein Array (Zugriff mit Subindex auf nichtindizierten Parameter)
05 hex	Falscher Datentyp (Änderungsauftrag mit Wert, der nicht zum Datentyp des Parameters passt)
06 hex	Kein Setzen erlaubt, sondern nur Zurücksetzen (Änderungsauftrag mit Wert ungleich 0 ohne Erlaubnis)
07 hex	Beschreibungselement nicht änderbar (Änderungsauftrag auf nicht änderbares Beschreibungselement.fehlerwert)
0B hex	Keine Bedienhoheit (Änderungsauftrag bei fehlender Bedienhoheit, siehe auch p0927)
0C hex	Schlüsselwort fehlt
11 hex	Auftrag wegen Betriebszustand nicht ausführbar (Zugriff ist aus nicht näher spezifizierten temporären Gründen nicht möglich)
14 hex	Wert unzulässig (Änderungsauftrag mit Wert, der zwar innerhalb der Grenzen liegt, aber aus anderen dauerhaften Gründen unzulässig ist, d. h. ein Parameter mit definierten Einzelwerten)
65 hex	Parameternummer derzeit deaktiviert (Abhängig vom Betriebszustand des Umrichters)
66 hex	Kanalbreite nicht ausreichend (Kommunikationskanal zu klein für Antwort)
68 hex	Unzulässiger Parameterwert (Der Parameter lässt nur bestimmte Werte zu)
6A hex	Anforderung nicht enthalten / Aufgabe wird nicht unterstützt. (Die gültigen Anforderungskennungen finden Sie in der Tabelle "Anforderungskennungen Steuerung → Umrichter")
6B hex	Kein Änderungszugriff bei freigegebenem Regler. (Der Betriebszustand des Umrichters verhindert eine Parameteränderung)
86 hex	Schreibzugriff nur bei Inbetriebnahme (p0010 = 15) (Der Betriebszustand des Umrichters verhindert eine Parameteränderung)
87 hex	Know-how-Schutz aktiv, Zugriff gesperrt
C8 hex	Änderungsauftrag unterhalb aktuell gültiger Grenze (Änderungsauftrag auf einen Wert, der zwar innerhalb der "absoluten" Grenzen liegt, der aber unterhalb der aktuell gültigen unteren Grenze liegt)
C9 hex	Änderungsauftrag oberhalb aktuell gültiger Grenze (Beispiel: Ein Parameterwert ist zu groß für die Umrichterleistung)
CC hex	Änderungsauftrag nicht erlaubt (Ändern nicht erlaubt, da Zugriffsschlüssel nicht vorhanden)

Parameternummer

Parameternummern < 2000 PNU = Parameternummer.

Schreiben Sie die Parameternummer in PNU (PKE

Bit 10 ... 0).

Parameternummern ≥ 2000 PNU = Parameternummer - Offset.

Schreiben Sie die Parameternummer minus den Offset in

PNU (PKE Bit 10 ... 0).

Schreiben Sie den Offset in den Seitenindex (IND

Bit 15 ... 8).

Tabelle 5-7 Offset und Seitenindex der Parameternummern

Parameternummer	Offset	Seitenin	Seitenindex								
		Hex	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
0000 1999	0	0 hex	0	0	0	0	0	0	0	0	
2000 3999	2000	80 hex	1	0	0	0	0	0	0	0	
6000 7999	6000	90 hex	1	0	0	1	0	0	0	0	
8000 9999	8000	20 hex	0	0	1	0	0	0	0	0	
10000 11999	10000	A0 hex	1	0	1	0	0	0	0	0	
20000 21999	20000	50 hex	0	1	0	1	0	0	0	0	
30000 31999	30000	F0 hex	1	1	1	1	0	0	0	0	
60000 61999	60000	74 hex	0	1	1	1	0	1	0	0	

Indizierte Parameter

Bei indizierten Parametern müssen Sie den Index als Hex-Wert in den Subindex (IND Bit 7 ... 0) schreiben.

Parameterinhalte

Parameterinhalte können Parameterwerte oder Konnektor-Parameter sein. Für Konnektor-Parameter benötigen Sie zwei Worte. Weitere Informationen zum Verschalten von Konnektor-Parametern finden Sie in der Betriebsanleitung der Control Unit im Abschnitt "Signale im Umrichter verschalten".

Tragen Sie den Parameterwert rechtsbündig wie folgt in den Parameterkanal ein:

• 8-Bit-Werte: Low Word, Bit 0 ... 7, die Bits 8 ... 15 sind Null.

• 16-Bit-Werte: Low Word, Bit 0 ... 15,

• 32-Bit-Werte: Low Word und High Word

Tragen Sie einen Konnektor-Parameter rechtsbündig wie folgt ein:

Nummer des Konnektor-Parameters:
 High Word

• Drive Object des Konnektor-Parameters: Low Word, Bit 10 ... 15

Index oder Bitfeld-Nummer des Konnektor-Parameters: Low Word, Bit 0 ... 9

5.3.4.1 Telegrammbeispiele, Länge des Parameterkanals = 4

Leseanforderung: Seriennummer des Power Modules auslesen (p7841[2])

Um den Wert des indizierten Parameters p7841 zu erhalten, müssen Sie das Telegramm des Parameterkanals mit folgenden Daten füllen:

- PKE, Bit 12 ... 15 (AK): = 6 (Anforderung Parameterwert (Feld))
- PKE, Bit 0 ... 10 (PNU): = 1841 (Parameternummer ohne Offset)
 Parameternummer = PNU + Offset (Seitenindex)
 (7841 = 1841 + 6000)
- IND, Bit 0 ... 7 (Subindex): = 2 (Index des Parameters)
- Da Sie den Parameterwert lesen wollen, sind die Worte 3 und 4 im Parameterkanal für die Anforderung des Parameterwertes belanglos und z. B. mit dem Wert 0 zu belegen.

Parameterkanal							
	PKE (1. Wort) IND, 2. Wort PWE1 - high, 3. Wort PWE2 - low, 4. Wort						
1512 1	11	10 0	15 8	7 0	15 0	15 10	9 0
AK	T	Parameternummer	Seitenindex	Subindex	Parameterwert	Drive Object	Index
0 1 1 0 0	0	1 1 1 0 0 1 1 0 0 0 1	10010000	00000010	00000000000000000000	000000	00000000000

Bild 5-4 Telegramm für Leseanforderung von p7841[2]

Schreibauftrag: Modus der Wiedereinschaltautomatik ändern (p1210)

Der Parameter p1210 legt den Modus der Wiedereinschaltautomatik fest:

- PKE, Bit 12 ... 15 (AK): = 7 (Änderung Parameterwert (Feld, Wort))
- PKE, Bit 0 ... 10 (PNU): = 4BA hex (1210 = 4BA hex, kein Offset, da 1210 < 1999)
- IND, Bit 8 ... 15 (Seitenindex): = 0 hex (Offset 0 entspricht 0 hex)
- IND, Bit 0 ... 7 (Subindex): = 0 hex (Parameter ist nicht indiziert)
- PWE1, Bit 0 ... 15: = 0 hex
- PWE2, Bit 0 ... 15: = 1A hex (26 = 1A hex)

	Parameterkanal								
	PKE, 1. Wort IND, 2. Wort PWE1 - high, 3. Wort PWE2 - low, 4. Wort								
1512	11	10 0	15 8	7 0	15 0	15 0			
AK		Parameternummer	Seitenindex	Subindex	Parameterwert (Bit 16 31)	Parameterwert (Bit 0 15)			
0 1 1 1	0	10010111010	00000000	00000000	0000000000000000000	0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0			

Bild 5-5 Telegramm, um die Wiedereinschaltautomatik mit p1210 = 26 zu aktivieren

Schreibauftrag: Digitaleingang 2 mit der Funktion EIN/AUS1 belegen (p0840[1] = 722.2)

Um den Digitaleingang 2 mit ON/OFF1 zu verknüpfen, müssen Sie den Parameter p0840[1] (Quelle ON/OFF1) mit dem Wert 722.2 (DI 2) belegen. Dazu müssen Sie das Telegramm des Parameterkanals wie folgt füllen:

- PKE, Bit 12 ... 15 (AK): = 7 hex (Änderung Parameterwert (Feld, Wort))
- PKE, Bit 0 ... 10 (PNU): = 348 hex (840 = 348 hex, kein Offset, da 840 < 1999)
- IND, Bit 8 ... 15 (Seitenindex): = 0 hex (Offset 0 ≙ 0 hex)
- IND, Bit 0 ... 7 (Subindex): = 1 hex (Befehlsdatensatz CDS1 = Index1)
- PWE1, Bit 0 ... 15: = 2D2 hex (722 = 2D2 hex)
- PWE2, Bit 10 ... 15: = 3f hex (Drive Object bei SINAMICS G120 immer 63 = 3f hex)
- PWE2, Bit 0 ... 9: = 2 hex (Index oder Bit-Nummer des Parameters: DI 2 = r0722.2)

	Parameterkanal							
	PKE, 1. Wort IND, 2. Wort PWE1 - high, 3. Wort PWE2 - low, 4. Wort							
1512 11	10 0	15 8	7 0	15 0	15 10	9 0		
AK	Parameternummer	Seitenindex	Subindex	Parameterwert	Drive Object	Index		
0 1 1 1 0	01101001000	00000000	00000001	0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0	1 1 1 1 1 1	00000000010		

Bild 5-6 Telegramm, um den DI 2 mit ON/OFF1 zu belegen

5.3.5 USS-Prozessdatenkanal (PZD)

Beschreibung

Der Prozessdatenkanal (PZD) enthält je nach Übertragungsrichtung die folgenden Daten:

- Steuerwörter und Sollwerte für den Slave
- Zustandswörter und Istwerte für den Master.

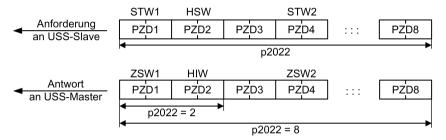


Bild 5-7 Prozessdatenkanal

Die ersten zwei Wörter sind:

- Steuerwort 1 (STW1) und Hauptsollwert (HSW)
- Statuswort 1 (ZSW1) und Hauptistwert (HIW)

Wenn p2022 größer oder gleich 4 ist empfängt der Umrichter das Zusatz-Steuerwort (STW2).

Mit dem Parameter p2051 legen Sie die Quellen der PZD fest.

Weitere Informationen finden Sie im Listenhandbuch.

5.3.6 Telegramm-Überwachung

Um die Überwachung der Telegramme einzustellen, brauchen Sie die Telegramm-Laufzeiten. Grundlage der Telegramm-Laufzeit ist die Zeichenlaufzeit:

Tabelle 5-8 Zeichenlaufzeit

Baudrate in bit/s	Übertragungszeit pro Bit	Zeichenlaufzeit (= 11 bit)
9600	104,170 μs	1,146 ms
19200	52,084 µs	0,573 ms
38400	26,.042 µs	0,286 ms
57600	17,361 µs	0,191 ms
115200	8,681 µs	0,095 ms

Die Telegramm-Laufzeit ist länger als die reine Addition aller Zeichenlaufzeiten (=Restlaufzeit). Sie müssen die Zeichenverzugszeit zwischen den einzelnen Zeichen des Telegramms ebenfalls berücksichtigen.

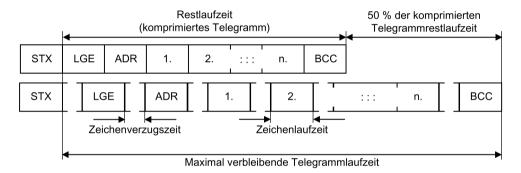


Bild 5-8 Telegramm-Laufzeit als Summe von Restlaufzeit und Zeichenverzugszeiten

Die gesamte Telegramm-Laufzeit ist immer kleiner als 150% der reinen Restlaufzeit.

Der Master muss vor jedem Anforderungs-Telegramm die Startverzögerung einhalten. Die Startverzögerung muss > 2 × Zeichenlaufzeit sein.

Der Slave antwortet erst nach Ablauf der Antwortverzögerung.

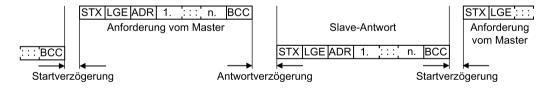


Bild 5-9 Startverzögerung und Antwortverzögerung

5.3 Kommunikation über USS

Die Dauer der Startverzögerung beträgt mindestens die Zeit für zwei Zeichen und hängt von der Baudrate ab.

Tabelle 5-9 Dauer der Startverzögerung

Baudrate in bit/s	Übertragungszeit pro Zeichen (= 11 bit)	Min. Startverzögerung
9600	1,146 ms	> 2,291 ms
19200	0,573 ms	> 1,146 ms
38400	0,286 ms	> 0,573 ms
57600	0,191 ms	> 0,382 ms
115200	0,095 ms	> 0,191 ms

Anmerkung: Die Zeichenverzugszeit muss kürzer als die Startverzögerung sein.

Telegramm-Überwachung des Masters

Wir empfehlen Ihnen, mit Ihrem USS-Master die folgenden Zeiten zu überwachen:

Antwortverzögerung: Reaktionszeit des Slave auf eine Anforderung vom Master

Die Antwortverzögerung muss < 20 ms, aber größer als die Start-

verzögerung sein

• Telegramm-Laufzeit: Übertragungszeit des vom Slave gesendeten Antworttelegramms

Telegramm-Überwachung des Umrichters

Der Umrichter überwacht die Zeit zwischen zwei Anforderungen des Masters. Der Parameter p2040 bestimmt die zulässige Zeit in ms. Der Umrichter deutet eine Überschreitung einer Zeit p2040 ± 0 als Telegrammausfall und reagiert mit der Störung F01910.

Richtwert für die Einstellung von p2040 ist 150% der Restlaufzeit, d. h. der Telegramm-Laufzeit ohne Berücksichtigung der Zeichenverzugszeiten.

Bei Kommunikation über USS prüft der Umrichter das Bit 10 des empfangenen Steuerworts 1. Falls das Bit bei eingeschaltetem Motor ("Betrieb") nicht gesetzt ist, reagiert der Umrichter mit der Störung F07220.

5.4 Kommunikation über Modbus RTU

Übersicht über die Kommunikation mit Modbus

Das Modbus-Protokoll ist ein Kommunikationsprotokoll auf Basis einer Client/Server-Architektur. Der Datenaustausch von ausgwählten Parametern und Prozessdaten erfolgt im azyklischen Zugriff über Modbus-Register.

Modbus bietet drei Übertragungsarten:

- Modbus ASCII über eine serielle Schnittstelle
 Daten im ASCII-Code. Der Datendurchsatz ist im Vergleich zu RTU geringer.
- Modbus RTU über eine serielle Schnittstelle
 Daten im Binärformat. Der Datendurchsatz ist größer als im ASCII-Code.
- Modbus TCP über Ethernet
 Die Daten werden als TCP/IP-Pakete übertragen. Für Modbus TCP ist der TCP-Port 502 reserviert.

Die SINAMICS G120-Umrichter unterstützen Modbus RTU.

Allgemeine Informationen zur Kommunikation über Modbus RTU

Die Kommunikation mit Modbus RTU läuft über die RS485-Schnittstelle mit maximal 247 Slaves.

- Die maximale Leitungslänge beträgt 1200 m.
- Zur Polarisation der Empfangs- und Sendeleitung gibt es zwei 100-kΩ-Widerstände, die Sie über den DIP-Schalter neben der Feldbusschnittstelle zu- oder abschalten können.

Hinweis

Einheitenumschaltung nicht zulässig

Die Funktion "Einheitenumschaltung", Details siehe Betriebsanleitung der Control Unit ist mit diesem Bussystem nicht zulässig!

5.4.1 Grundeinstellungen für die Kommunikation

Übersicht

Um die Kommunikation über Modbus RTU einzustellen, haben Sie je nach Umrichter folgende Möglichkeiten zur Auswahl:

• Für alle Umrichter mit RS485-Schnittstelle

21 "USS Fieldbus"

Für Umrichter mit einer CU230P-2 HVAC / CU230P-2 BT

109 "BT Mac 9: Modbus RTU Fieldbus"

Weitere Informationen finden Sie in der Betriebsanleitung Ihres Umrichters.

Übersicht der Handbücher (Seite 232).

Vorgehenweise mit Voreinstellung 21 "USS Fieldbus"

Um die Kommunikation über Modbus RTU einzustellen, gehen Sie folgendermaßen vor:

- Aktivieren Sie die Kommunikation über die RS485-Schnittstelle über eine der folgenden Möglichkeiten:
 - mit Startdrive bei der Inbetriebnahme im Schritt "Voreinstellungen der Sollwerte/Befehlsquellen" :

21: USS Fieldbus

- mit dem BOP-2 bei der Grundinbetriebnahme unter Schritt "MAc PAr P15":
 FB USS
- über die Parameternummer: p0015 = 21
- 2. Stellen Sie das Busprotokoll über p2030 ein: p2030 = 2
- 3. Stellen Sie die Umrichteradresse ein.
- 4. Weitere Anpassungen nehmen Sie anhand der im folgenden Absatz aufgelisteten Parameter vor.
- 5. Sichern Sie die Einstellungen netzausfallsicher, wenn Sie mit Startdrive arbeiten.

Damit haben Sie die Kommunikation über Modbus eingestellt. □

5.4.1.1 Adresse einstellen

Gültiger Adressbereich: 1 ... 247

Sie haben folgende Möglichkeiten zum Einstellen der Adresse:

Mit dem Adress-Schalter auf der Control Unit im Bereich von 1 ... 127

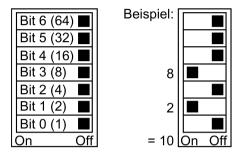


Bild 5-10 Adress-Schalter mit Beispiel für die Busadresse 10

Der Adress-Schalter hat Vorrang vor den anderen Einstellungen.

 Mit Startdrive oder einem Operator Panel über Parameter p2021 im Bereich von 1 ... 247 (Werkseinstellung: p2021 = 1)

Die Einstellung über p2021 ist nur möglich, wenn im Adress-Schalter die Adresse 0 eingestellt ist.

Sichern Sie die Einstellungen netzausfallsicher, wenn Sie mit Startdrive arbeiten.

Die Position des Adress-Schalters finden Sie in der Betriebsanleitung des Umrichters.

Handbücher und technischer Support (Seite 232)

Geänderte Bus-Adresse aktivieren

Vorgehensweise

- 1. Stellen Sie die Adresse wie oben beschrieben ein.
- 2. Schalten Sie die Versorgungsspannung des Umrichters aus.
- 3. Warten Sie bis alle LED auf dem Umrichter dunkel sind.
- 4. Schalten Sie die Versorgungsspannung des Umrichters wieder ein.

Nach dem Einschalten sind Ihre Einstellungen wirksam.

Damit haben Sie die Bus-Adresse eingestellt.

5.4.1.2 Parameter zum Einstellen der Kommunikation über Modbus RTU

Allgemeine Einstellungen

Feldbus Protokollauswahl p2030 = 2 (Modbus RTU)

Baudrate p2020 = 7, 19200 bit/s

Einstellbereich: 4800 bit/s ... 187500 bit/s

Parity

Werksseitig ist die Control Unit für Controller mit parity even eingestellt. Über p2031 können Sie die Parity an ihren Controller anpassen:

- p2031 = 0: No parity
- p2031 = 1: Partiy odd
- p2031 = 2: Parity even

Hinweis

Anzahl Stopp-Bits

Bei No parity sendet die Steuerung 2, bei Parity odd oder Parity even nur 1 Stopp-Bit

Modbus Timing p2024[0 ... 2]

p2024[0]: Maximale Slave-Telegramm-Verarbeitungszeit:

Zeit, nach der Glave eine Antwort an den Master gesendet haben muss. 0 ms ... 10000 ms, Werkseinstellung = 6000 ms

• p2024[1]: Zeichenverzugszeit:

Zeichenverzugszeit: maximal zulässige Zeit zwischen einzelnen Zeichen im Modbus-Frame. (Modbus-Standard Abarbeitungszeit für 1,5 Byte).

• p2024[2]: Telegrammpausenzeit:

maximal zulässige Zeit zwischen Modbus Telegrammen. (Modbus-Standard Abarbeitungszeit für 3,5 Byte).

Werte für p2024[1] und p2024[2]

Tabelle 5-10 Baudraten, Übertragungszeiten und Delays (Seite 131).

Feldbus-Überwachungszeit p2040 = 1000 ms

Einstellbereich: 0 ms ... 1999999 ms

Die Feldbus-Überwachungszeit muss umso größer sein, je mehr Slaves am Netz hängen.

Wenn innerhalb von einem Zyklus der Feldbus-Überwachungszeit keine Prozessdaten übertragen werden, schaltet der Umrichter mit Störung F01910 ab.

p2040 = 0 ⇒ Busüberwachung abgeschaltet.

Feldbus Fehlerstatistik r2029

Anzeige von Empfangsfehlern an der Feldbus-Schnittstelle

Analogausgänge verschalten

Wenn Sie die Kommunikation über Modbus einstellen (p2030 = 2) werden die Analogausgänge des Umrichters intern mit den Feldbusanalogausgängen verschaltet:

- p0771[0] = 791[0]
- p0771[1] = 791[1].

Die Werte für p0791[0] und p0791[1] werden über die Register 40523 und 40524 geschrieben. Verschaltungen der Parameter p0791 mit anderen Quellen werden abgewiesen.

Das heißt, die Steuerung gibt anlagenspezifische Werte über die Analogausgänge des Umrichters aus.

Wenn Sie dennoch einen umrichterspezifischen Wert anzeigen wollen, müssen Sie die entsprechende Verdrahtung anpassen.

Beispiel

- AO 0 soll den über die Steuerung mit Register 40523 geschriebenen Wert anzeigen. In diesem Fall sind keine weiteren Einstellungen im Umrichter erforderlich.
- AO 1 soll den geglätteten Stromistwert anzeigen. Dazu müssen Sie p0771[1] = 27 (r0027 geglätteter Stromistwert) einstellen.
 In diesem Fall führt schreibender Zugriff über das Register 40524 auf p0791[1] zu einer Fehlermeldung in der Steuerung.

Hinweis

Rücksetzen auf Werkseinstellung bei Modbus

Wenn Sie Kommunikation über Modbus (p2030 = 2) eingestellt haben, werden bei Rücksetzen auf Werkseinstellung die Analogausgänge wieder auf p0771[0] = 791[0] und p0771[1] = 791[1] verschaltet.

5.4.2 Modbus-RTU-Telegramm

Beschreibung

Bei Modbus gibt es genau einen Master und bis zu 247 Slaves. Der Master stößt immer die Kommunikation an. Die Slaves senden Daten auf Anforderung des Masters. Kommunikation von Slave zu Slave ist nicht möglich. Der Umrichter arbeitet immer als Slave.

Das folgende Bild zeigt den Aufbau eines Modbus-RTU-Telegramms.

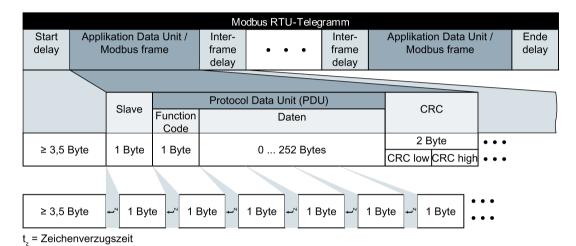


Bild 5-11 Modbus mit Delay Times

Der Datenbereich des Telegramms ist entsprechend der Mapping-Tabellen aufgebaut.

5.4.3 Baudraten und Mapping-Tabellen

Zulässige Baudraten und Telegrammverzögerung

Das Modbus-RTU-Telegramm benötigt Pausen für folgende Situationen:

- für die Start-Erkennung
- für die Trennung den einzelnen Frames
- für die Ende-Erkennung

Mindestdauer: Abarbeitungszeit für 3,5 Byte (einstellbar über p2024[2]).

Außerdem ist zwischen den einzelnen Bytes eines Frames eine Zeichenverzugszeit zulässig. Höchstdauer: Abarbeitungszeit für 1,5 Byte (einstellbar über p2024[1]).

Tabelle 5- 10 Baudraten, Übertragungszeiten und Delays

Baudrate in bit/s (p2020)	Übertragungszeit pro Zeichen (11 bit)	Min. Pause zwischen zwei Telegrammen (p2024[2])	Maximale Pause zwischen zwei Bytes (p2024[1])
4800	2,292 ms	≥ 8,021 ms	≤ 3,438 ms
9600	1,146 ms	≥ 4,010 ms	≤ 1,719 ms
19200 (Werkseinstellung)	0,573 ms	≥ 1,75 ms	≤ 0,859 ms
38400	0,286 ms	≥ 1,75 ms	≤ 0,75 ms
57600	0,191 ms	≥ 1,75 ms	≤ 0,556 ms
76800	0,143 ms	≥ 1,75 ms	≤ 0,417 ms
93750	0,117 ms	≥ 1,75 ms	≤ 0,341 ms
115200	0,095 ms	≥ 1,75 ms	≤ 0,278 ms
187500	0,059 ms	≥ 1,75 ms	≤ 0,171 ms

Hinweis

Die Werkseinstellung für p2024[1] und p2024[2] ist 0. Der Umrichter legt die jeweiligen Werte abhängig von der Protokollauswahl (p2030) bzw. der Baudrate fest.

Modbus-Register und Parameter der Control Unit

Der Umrichter unterstützt die nachfolgend aufgeführten Register. Der Zugriff auf andere Register führt zu dem Fehler "Exception Code".

Hinweis

Schreib- und Lesezugriff auf Umrichterdaten

R: lesen über FC03; W: schreiben über FC06; R/W: lesen über FC03 oder schreiben über FC06

5.4 Kommunikation über Modbus RTU

Tabelle 5- 11 Zuordnung der Modbus-Register zu den Parametern - Prozessdaten

Regis- ter	Beschreibung	Zugriff	Skalie- rung	Daten / Parameter
40100	Steuerwort Details finden Sie im Funktionsplan 9342 im Listenhandbuch des Umrichters.	R/W	1	Prozessdaten 1
	Handbücher (Seite 232)			
40101	Hauptsollwert	R/W	1	Prozessdaten 2
40110	Zustandswort Details finden Sie im Funktionsplan 9352 im Listenhandbuch des Umrichters. Handbücher (Seite 232)	R	1	Prozessdaten 1
40111	Hauptistwert	R	1	Prozessdaten 2

5.4.4 Mapping-Tabellen - Umrichterdaten

Tabelle 5- 12 Zuordnung der Modbus-Register zu den Parametern - Ein und Ausgänge

Regis- ter	Beschreibung	Zugriff	Ein- heit	Skalie- rung	ON-/OFF-Text / Wertebereich		Daten / Parameter
Digitale Ausgänge							
40200	DO 0	R/W	-	1	HIGH	LOW	p0730, r747.0, p748.0
40201	DO 1	R/W	-	1	HIGH	LOW	p0731, r747.1, p748.1
40202	DO 2	R/W	-	1	HIGH	LOW	p0732, r747.2, p748.2
Analoga	usgänge						
40220	AO 0	R	%	100	-100.0 .	100.0	r0774.0
40221	AO 1	R	%	100	-100.0 .	100.0	r0774.1
40523	AO 0	R/W	%	100	-199.99 .	199.99	p0791.0
40524	AO 1	R/W	%	100	-199.99 .	199.99	p0791.1
Digitaleiı	ngänge						
40240	DI 0	R	-	1	HIGH	LOW	r0722.0
40241	DI 1	R	-	1	HIGH	LOW	r0722.1
40242	DI 2	R	-	1	HIGH	LOW	r0722.2
40243	DI 3	R		1	HIGH	LOW	r0722.3
40244	DI 4	R	-	1	HIGH	LOW	r0722.4
40245	DI 5	R	-	1	HIGH	LOW	r0722.5
Analoge	ingänge						
40260	AI 0	R	%	100	-300.0 .	300.0	r0755 [0]
40261	Al 1	R	%	100	-300.0 300.0		r0755 [1]
40262	AI 2	R	%	100	-300.0 300.0		r0755 [2]
40263	AI 3	R	%	100	-300.0 .	300.0	r0755 [3]

5.4 Kommunikation über Modbus RTU

Tabelle 5- 13 Zuordnung der Modbus-Register zu den Parametern - Umrichterdaten

Register	Beschreibung	Zugriff	Einheit	Skalie- rung	ON-/OFF-Text / Wertebereich	Daten / Parameter
40300	Powerstack-Nummer	R	1	1	0 32767	r0200
40301	Firmware des Umrichters	R		1	z. B. 470	r0018 / 10000
40320	Bemessungsleistung	R	kW	100	0 327.67	r0206
40321	Stromgrenze	R/W	Α	10	10.0 400.0	p0640
40322	Hochlaufzeit	R/W	s	100	0.00 650.0	p1120
40323	Rücklaufzeit	R/W	s	100	0.00 650.0	p1121
40324	Bezugsdrehzahl	R/W	RPM	1	6 32767	p2000
Umrichte	rdiagnose					
40340	Drehzahl-Sollwert	R	RPM	1	-16250 16250	r0020
40341	Drehzahl-Istwert	R	RPM	1	-16250 16250	r0022
40342	Ausgangsfrequenz	R	Hz	100	- 327.68 327.67	r0024
40343	Ausgangsspannung	R	V	1	0 32767	r0025
40344	Zwischenkreisspannung	R	V	1	0 32767	r0026
40345	Stromistwert	R	Α	100	0 163.83	r0027
40346	Drehmoment-Istwert	R	Nm	100	- 325.00 325.00	r0031
40347	Wirkleistung-Istwert	R	kW	100	0 327.67	r0032
40348	Energieverbrauch	R	kWh	1	0 32767	r0039
40349	Steuerungshoheit	R		1	HAND AUTO	r0807

Tabelle 5- 14 Zuordnung der Modbus-Register zu den Parametern - Fehlerdiagnose

Register	Beschreibung	Zugriff	Ein- heit	Skalie- rung	ON-/OFF-Text / Wertebereich	Daten / Parameter
40400	Störungsnummer, Index 0	R		1	0 32767	r0947 [0]
40401	Störungsnummer, Index 1	R		1	0 32767	r0947 [1]
40402	Störungsnummer, Index 2	R		1	0 32767	r0947 [2]
40403	Störungsnummer, Index 3	R		1	0 32767	r0947 [3]
40404	Störungsnummer, Index 4	R		1	0 32767	r0947 [4]
40405	Störungsnummer, Index 5	R		1	0 32767	r0947 [5]
40406	Störungsnummer, Index 6	R		1	0 32767	r0947 [6]
40407	Störungsnummer, Index 7	R		1	0 32767	r0947 [7]
40408	Warnnummer	R		1	0 32767	r2110 [0]
40409	Aktueller Warncode	R		1	0 32767	r2132
40499	PRM ERROR code	R		1	0 255	

Tabelle 5- 15 Zuordnung der Modbus-Register zu den Parametern - Technologieregler

Register	Beschreibung Zugriff Ein- Skalie- heit rung		ON-/OFF-Text / Wertebereich	Daten / Parameter		
40500	Technologieregler-Freigabe	R/W		1	0 1	p2200, r2349.0
40501	Technologieregler-MOP	R/W	%	100	-200.0 200.0	p2240
Technolo	gieregler anpassen					
40510	Zeitkonstante für Istwert-Filter des Technologiereglers	R/W		100	0.00 60.0	p2265
40511	Skalierungsfaktor für Istwert des Technologiereglers	R/W	%	100	0.00 500.00	p2269
40512	Proportionalverstärkung Technologieregler	R/W		1000	0.000 65.000	p2280
40513	Nachstellzeit des Technologiereglers	R/W	s	1	0 60	p2285
40514	Zeitkonstante D-Anteil Technologieregler	R/W		1	0 60	p2274
40515	Max-Begrenzung Technologieregler	R/W	%	100	-200.0 200.0	p2291
40516	Min-Begrenzung Technologieregler	R/W	%	100	-200.0 200.0	p2292

Tabelle 5- 16 Zuordnung der Modbus-Register zu den Parametern - PID-Diagnose

Register	Beschreibung	Zugriff	Ein- heit	Skalie- rung	ON-/OFF-Text / Wertebereich	Daten / Parameter
40520	Wirksamer Sollwert nach internem Technologieregler-MOP HLG	R	%	100	-100.0 100.0	r2250
40521	Istwert Technologieregler nach Filter	R	%	100	-100.0 100.0	r2266
40522	Ausgangssignal Technologieregler	R	%	100	-100.0 100.0	r2294

Tabelle 5- 17 Modbus-Register für die Kommunikation über DS47

Register	Beschreibung	Zugriff	Ein- heit	Skalierung	Daten / Parameter
40601	DS47 Control	R/W		1	
40602	DS47 Header	R/W			
40603	DS47 Daten 1	R/W			
40722	DS47 Daten 120	R/W			

5.4.5 Azyklische Kommunikation über Modbus RTU

Die azyklische Kommunikation, bzw. der allgemeine Parameterzugriff erfolgt über die Modbus-Register 40601 ... 40722.

Über 40601 wird die azyklische Kommunikation gesteuert. 40602 enthält den Funktionscode (immer = 47 = 2F hex) und die Anzahl der folgenden Nutzdaten. In den Registern 40603 ... 40722 sind die Nutzdaten enthalten.

Übersicht über die azyklische Kommunikation

Wert in Register				Erläuterung		
40601	40602		40603 40722			
0	47		•••	Werte für azyklischen Zugriff schreiben		
1	47	Auftrags- länge [Byte]	Auftragsdaten	azyklischen Zugriff aktivieren		
2	47	Antwort- länge [Byte]	Antwortdaten	Antwort auf einen erfolgreichen Auftrag		
2	47	0	Fehlercode	Antwort auf einen fehlerhaften Auftrag		

Fehlercodes

- 1 hex: Invalid Length (ungültige Länge)
- 2 hex: Invalid State (Aktion ist im aktuellen Umrichterzustand nicht erlaubt)
- 3 hex: Invalid function Code (FC ≠ 2F hex)
- 4 hex: Response not ready (Die Antwort ist noch nicht erfolgt)
- 5 hex: Internal Error (allgemeiner Systemfehler)

Fehlerhafte Zugriffe auf Parameter über den Datensatz 47 werden in den Registern 40603 ... 40722 protokolliert. Die Fehlercodes sind im PROFIdrive-Profil beschrieben.

5.4.6 Schreib- und Lesezugriff über Function Codes

Grundsätzlicher Aufbau eines Schreib- Lesezugriffs über Function Codes

Slave		Protocol Data Unit (PDU)	CRC		
ID	FC	Data	low	high	
1 Byte	1 Byte	0 252 Bytes	2 B	yte	

Verwendete Funktionscodes

Für den Datenaustausch zwischen Master und Slave werden bei der Kommunikation über Modbus vordefinierte Function Codes verwendet.

Die Control Unit nutzt folgende Modbus Funktionscodes:

FC 03: Holding Registers zum Lesen von Daten aus dem Umrichter

FC 06: Write Single Registers zum Schreiben einzelner Register

FC 16: Write Multiple Registers zum Schreiben mehrerer Register

Aufbau einer Lese-Anforderung über Modbus Funktionscode 03 (FC 03)

Als Startadresse ist jede gültige Register-Adresse zulässig.

Die Steuerung kann über den FC 03 mit einer Anforderung mehr als ein Register ansprechen. Die Anzahl der angesprochenen Register ist in Byte 4 und 5 der Lese-Anforderung enthalten.

Tabelle 5- 18 Aufbau einer Lese-Anforderung für Slave Nummer 17, Beispiel

Wert	Byte	Beschreibung
11 h	0	Slave-Adresse
03 h	1	Funktionscode
00 h	2	Register Startadresse "High" (Register 40110)
6D h	3	Register Startadresse "Low"
00 h	4	Anzahl der Register "High" (2 Register: 40110; 40111)
02 h	5	Anzahl der Register "Low"
xx h	6	CRC "Low"
xx h	7	CRC "High"

5.4 Kommunikation über Modbus RTU

Die Response gibt den entsprechenden Datensatz zurück:

Tabelle 5- 19 Antwort des Slaves auf dieLese-Anforderung, Beispiel

Wert	Byte	Beschreibung
11 h	0	Slave-Adresse
03 h	1	Funktionscode
04 h	2	Anzahl der Bytes (4 Bytes werden zurück gegeben)
11 h	3	Daten erstes Register "High"
22 h	4	Daten erstes Register "Low"
33 h	5	Daten zweites Register "High"
44 h	6	Daten zweites Register "Low"
xx h	7	CRC "Low"
xx h	8	CRC "High"

Tabelle 5- 20 Ungültige Lese-Anforderung

Lese-Anforderung	Reaktion des Umrichters
Ungültige Register-Adresse	Exception Code 02 (ungültige Datenadresse)
Lesen eines "Write Only Register"	Telegramm in dem alle Werte auf 0 gesetzt
Lesen eines reservierten Registers	sind.
Steuerung adressiert mehr als 125 Register	Exception Code 03 (ungültiger Datenwert)
Startadresse und Anzahl der Register einer Adresse liegen außerhalb eines definierten Registerblocks	Exception Code 02 (ungültige Datenadresse)

Aufbau einer Schreib-Anforderung über Modbus Funktionscode 06 (FC 06)

Startadresse ist die Holding-Register-Adresse.

Über den FC 06 kann mit einer Anforderung immer nur genau ein Register angesprochen werden. Im Byte 4 und 5 der Schreib-Anforderung ist der Wert enthalten, der in das angesprochene Register geschrieben wird.

Tabelle 5-21 Aufbau einer Schreib-Anforderung für Slave Nummer 17, Beispiel

Wert	Byte	Beschreibung
11 h	0	Slave-Adresse
06 h	1	Funktionscode
00 h	2	Register Startadresse "High" (Schreibregister 40100)
63 h	3	Register Startadresse "Low"
55 h	4	Register-Daten "High"
66 h	5	Register-Daten "Low"
xx h	6	CRC "Low"
xx h	7	CRC "High"

Die Response gibt die Register-Adresse (Byte 2 und 3) und den Wert (Byte 4 und 5) zurück, den die übergeordnete Steuerung in das Register geschrieben hat.

Tabelle 5- 22 Antwort des Slaves auf die Schreib-Anforderung

Wert	Byte	Beschreibung
11 h	0	Slave-Adresse
06 h	1	Funktionscode
00 h	2	Register Startadresse "High"
63 h	3	Register Startadresse "Low"
55 h	4	Register-Daten "High"
66 h	5	Register-Daten "Low"
xx h	6	CRC "Low"
xx h	7	CRC "High"

Tabelle 5-23 Ungültige Schreib-Anforderung

Schreib-Anforderung	Reaktion des Umrichters	
Falsche Adresse (es existiert keine Holding-Register- Adresse)	Exception Code 02 - ungültige Datenadresse	
Schreiben in ein "Read Only"	Exception Code 04 - device failure	
Schreiben in ein reserviertes Register		

Bei Exception Code 4 können Sie über das Holding Register 40499 den antriebsinternen Fehlercode auslesen, der beim letzten Parameterzugriff über die Holding Register aufgetreten ist.

5.4.7 Parameter azyklisch lesen und schreiben über FC 16

Über den FC 16 können mit einem Request bis zu 122 Register direkt hintereinander schreiben, während Sie bei Write Single Register (FC 06) für jedes Register die Header-Daten einzeln schreiben müssen.

Header

Im Header geben Sie neben der Slave-Adresse die Übertragungsart, die Startadresse und die Anzahl der folgenden Register an.

Nutzdaten

In den Nutzdaten steuern Sie über das Register 40601 den Zugriff.

Im Register 40602 legen Sie den azyklischen Zugriff sowie die Länge der Auftragsdaten fest.

Register 40603 enthält die Request-Referenz - sie wird vom Anwender festgelegt - und die Zugriffsart - Lesen oder schreiben.

Ab Register 40603 gleicht der Auftrag der azyklischen Kommunikation über Datensatz 47 nach PROFIdrive.

PROFIdrive-Profil - Azyklische Kommunikation (Seite 42).

Register 40604 enthält die Nummer des Drive Objects (bei der CU230P-2 immer 1) und die Anzahl der Parameter, die ausgelesen, bzw. geschrieben werden.

Register 40605 enthält das Attribut, über das Sie steuern, ob Sie den Parameterwert oder die Attribute des Parameters auslesen. In Anzahl der Elemente geben Sie an, wie viele Indices gelesen werden.

5.4.7.1 Parameter lesen

Beispiel: r0002 azyklisch lesen

Tabelle 5- 24 Parameterauftrag schreiben: Lesen des Parameterwerts von r0002 von Slave Nummer 17

Wert	Byte	Beschreibung
11 h	0	Slave-Adresse
10 h	1	Funktionscode (Write multiple)
0258 h	2,3	Register Startadresse
0007 h	4,5	Anzahl der zu lesenden Register (40601 40607)
OE h	6	Anzahl der Datenbytes (7 Register, je 2 Byte = 14 Byte)
0001 h	7,8	40601: DS47 Control = 1 (Auftrag aktivieren)
2F0A h	9,10	40602: Funktionscode 2F h (47), Auftragslänge 10 Bytes (0A h)
8001 h	11,12	40603: Auftragsreferenz = 80 h, Auftragskennung = 1 h
0101 h	13,14	40604: DO-Id = 1 , Anzahl Parameter = 1
1001 h	15,16	40605: Attribut, Anzahl der Elemente = 1
0002 h	17,18	40606: Parameternummer = 2
0000 h	19,20	40607: Subindex = 0
xx h	21	CRC "Low"
xx h	22	CRC "High"

Tabelle 5- 25 Parameterauftrag starten: Lesen des Parameterwerts von r0002 von Slave Nummer 17

Wert	Byte	Beschreibung
11 h	0	Slave-Adresse
03 h	1	Funktionscode (lesen)
0258 h	2,3	Register Startadresse
0007 h	4,5	Anzahl der zu lesenden Register (40601 40607)
0010 h	6,7	Anzahl der Register
xx h	8	CRC "Low"
xx h	9	CRC "High"

Tabelle 5- 26 Antwort bei erfolgreichem Lesen

Wert	Byte	Beschreibung
11 h	0	Slave-Adresse
03 h	1	Funktionscode (lesen)
20 h	2	Anzahl der folgenden Datenbytes (20 h: 32 Bytes
0002 h	3,4	40601: DS47 Control = 2 (der Auftrag wurde ausgeführt)
2F08 h	5,6	40602: Funktionscode 2F h (47), Antwortlänge 8 Bytes
8001 h	7,8	40603: Auftragsreferenz gespiegelt = 80 h,
		Antwortkennung = 1 (Parameter anfordern)
0101 h	9,10	40604: DO-ID = 1, Anzahl Parameter = 1
0301 h	11,12	40605: Format, Anzahl der Elemente = 1
001F h	13,14	40606: Parameter-Wert = 1F h (31)
xx h	15	CRC "Low"
xx h	16	CRC "High"

5.4 Kommunikation über Modbus RTU

Tabelle 5-27 Antwort bei missglücktem Lesen - Leseauftrag noch nicht abgeschlossen

Wert	Byte	Beschreibung
11 h	0	Slave-Adresse
03 h	1	Funktionscode (lesen)
20 h	2	Anzahl der folgenden Datenbytes (20 h: 32 Bytes
0001 h	3,4	40601: Kontrollwert 1 = Auftrag wird bearbeitet
2F00 h	5,6	40602: Funktionscode 2F h(47), Antwortlänge 0 (Fehler)
0004 h	7,8	40603: Fehlercode: 0004 Response Not Ready (Antwort noch nicht erfolgt)
xx h	9	CRC "Low"
xx h	10	CRC "High"

5.4.7.2 Parameter schreiben

Beispiel: p1121 = 12,15 setzen

Tabelle 5-28 Parameterauftrag schreiben: Schreiben des Parameterwerts von p1121 von Slave Nummer 17

Wert	Byte	Beschreibung
11 h	0	Slave-Adresse
10 h	1	Funktionscode (Write multiple)
0258 h	2,3	Register Startadresse
000A h	4,5	Anzahl der zu schreibenden Register (40601 40610)
14 h	6	Anzahl der Datenbytes (10 Register, je 2 Byte = 20 Byte)
0001 h	7,8	40601: C1 (Auftrag aktivieren)
2F10 h	9,10	40602: Funktionscode 2F h (47), Auftragslänge 16 Bytes (10 h)
8002 h	11,12	40603: Auftragsreferenz = 80 h, Auftragskennung = 2 h (schreiben)
0101 h	13,14	40604: DO-Id = 1 , Anzahl Parameter = 1
1001 h	15,16	40605: Attribut, Anzahl der Elemente = 1
0461 h	17,18	40606: Parameternummer = 1121
0000 h	19,20	40607: Subindex = 0
0801 h	21,22	40608: Format + Anzahl Werte
4142 h	23,24	40609: Parameterwert 12,15
6666 h	25,26	40610: Parameterwert
xx h	27	CRC "Low"
xx h	28	CRC "High"

Tabelle 5- 29 Parameterauftrag starten: Schreiben des Parameterwerts von p1121 von Slave Nummer 17

Wert	Byte	Beschreibung
11 h	0	Slave-Adresse
06 h	1	Funktionscode (schreiben)
0258 h	2,3	Register Startadresse
0007 h	4,5	Anzahl der zu schreibenden Register (40601 40610)
0010 h	6,7	Anzahl der Register
xx h	8	CRC "Low"
xx h	9	CRC "High"

Tabelle 5- 30 Antwort bei erfolgreichem Schreiben

Wert	Byte	Beschreibung
11 h	0	Slave-Adresse
06 h	1	Funktionscode (schreiben)
20 h	2	Anzahl der folgenden Datenbytes (20 h: 32 Bytes
0002 h	3,4	40601: DS47 Control = 2 (der Auftrag wurde ausgeführt)
2F04 h	5,6	40602: Funktionscode 2F h (47), Antwortlänge 4 Bytes
8002 h	7,8	40603: Auftragsreferenz gespiegelt = 80 h,
		Antwortkennung = 2 (Parameter ändern)
0101 h	9,10	40604: DO-ID = 1, Anzahl Parameter = 1
xx h	11	CRC "Low"
xx h	12	CRC "High"

Tabelle 5- 31 Antwort bei missglücktem Schreiben - Schreibauftrag noch nicht abgeschlossen

Wert	Byte	Beschreibung
11 h	0	Slave-Adresse
06 h	1	Funktionscode (schreiben)
20 h	2	Anzahl der folgenden Datenbytes (20 h: 32 Bytes
0001 h	3,4	40601: DS47 Control = 1 (Auftrag wird bearbeitet)
2F00 h	5,6	40602: Funktionscode 2F h(47), Antwortlänge 0 (Fehler)
0004 h	7,8	40603: Fehlercode: 0004 Response Not Ready (Antwort noch nicht erfolgt)
xx h	9	CRC "Low"
xx h	10	CRC "High"

5.4.8 Ablauf der Kommunikation

Ablauf der Kommunikation im Normalfall

Im Normalfall sendet der Master ein Telegramm an einen Slave (Adressbereich 1 ... 247). Der Slave sendet ein Antworttelegramm an den Master zurück. In diesem wird der Funktions-Code gespiegelt, und der Slave setzt seine eigene Adresse in den Message-Frame ein, wodurch sich der Slave beim Master identifiziert.

Der Slave verarbeitet nur Aufträge und Telegramme, die direkt an ihn adressiert sind.

Kommunikationsfehler

Erkennt der Slave einen Kommunikationsfehler beim Empfang (Parity, CRC), so sendet er keine Antwort an den Master (dies kann zu "Sollwert-Timeout" führen).

Logischer Fehler

Erkennt der Slave einen logischen Fehler innerhalb einer Anfrage, antwortet er mit einer "Exception Response" an den Master. Dabei setzt der Slave in der Antwort das höchste Bit im Funktions-Code auf 1. Erhält er z. B. einen nicht unterstützen Funktions-Code vom Master, so antwortet der Slave mit einer "Exception Response" mit dem Code 01 (Illegal Function Code).

Tabelle 5-32 Übersicht über die Exception Codes

Exception- Code	Modbus- Name	Anmerkung
01	Illegal Function Code	Ein unbekannter (nicht unterstützter) Funktions-Code wurde an den Slave gesendet.
02	Illegal Data Address	Eine ungültige Adresse wurde abgefragt.
03	Illegal Data Value	Ein ungültiger Datenwert wurde erkannt.
04	Server Failure	Slave hat während der Verarbeitung abgebrochen.

Verarbeitungszeit maximal, p2024[0]

Die Slave-Response-Zeit ist die Zeit, in welcher der Modbus-Master eine Antwort auf einen Request erwartet. Stellen Sie die Slave-Response-Zeit (p2024[0] im Umrichter) im Master und Slave auf den gleichen Wert ein.

Prozessdaten-Überwachungszeit (Sollwert-Timeout), p2040

Der Modbus gibt "Sollwert-Timeout" (F1910) aus, wenn p2040 > 0 ms eingestellt ist und innerhalb dieser Zeit keine Prozessdaten abgefragt werden.

Der "Sollwert-Timeout" gilt nur für den Zugriff auf Prozessdaten (40100, 40101, 40110, 40111). Der "Sollwert-Timeout" wird für Parameterdaten (40200 ... 40522) nicht generiert.

Hinweis

Passen Sie die Zeit (WE = 100ms) abhängig von der Anzahl der Slaves und der am Bus eingestellten Baudrate an.

5.4.9 Applikationsbeispiel

Ein Applikationsbeispiel zu MODBUS RTU finden Sie im Internet:

Kommunikation über die MODBUS Schnittstelle (https://support.industry.siemens.com/cs/ww/de/view/35928944)

5.5 Kommunikation über BACnet MS/TP - nur CU230P-2 HVAC / BT

BACnet-Eigenschaften

In BACnet werden Komponenten und Systeme als Black-Boxes betrachtet, die eine Anzahl von Objekten enthalten. BACnet-Objekte legen nur das Verhalten außerhalb des Gerätes fest, BACnet bestimmt keine internen Funktionen.

Eine Reihe von Objekttypen und deren Instanzen repräsentieren eine Komponente.

Jeder BACnet-Device enthält genau ein BACnet Device Object. Ein NSAP (Network Service Access Point - bestehend aus Netzwerknummer und MAC-Adresse; MAC: **M**edium **A**ccess **C**ontrol) identifiziert eindeutig einen BACnet-Device. Diese Adresse ist BACnet-spezifisch und ist nicht mit der Ethernet MAC-Adresse zu verwechseln.

Datenaustausch mit dem Client

Der Umrichter empfängt Steuerbefehle und Sollwerte über Dienstanweisungen von der Steuerung und sendet seinen Status an die Steuerung zurück. Der Umrichter kann auch selbständig Telegramme senden, beziehungsweise Dienste (Services) ausführen, z. B. COV_Notification.

Kommunikationseinstellungen

- Die Control Unit unterstützt BACnet über RS485 (BACnet MS/TP),
- Die Kommunikation unterstützt Unicode, kodiert mit dem Zeichensatz UTF-8
- Die maximale Kabellänge beträgt 1200 m (3281 ft).

Protocol Implementation Conformance Statement

Das Protocol Implementation Conformance Statement (PICS) finden Sie im Internet unter: PICS (http://www.big-eu.org/uploads/tx_teproddb/catalog_pdf/PICS_CU230P-2_HVAC_v47_SP3.docx)

Hinweis

Einheitenumschaltung nicht zulässig

Die Funktion "Einheitenumschaltung", Details siehe Betriebsanleitung der Control Unit ist mit diesem Bussystem nicht zulässig!

5.5.1 Grundeinstellungen für die Kommunikation

Kommunikation über BACnet einstellen

Vorgehenweise

- 1. Wählen Sie die Voreinstellung 110
 - mit Startdrive bei der Inbetriebnahme im Schritt "Voreinstellungen der Sollwerte/Befehlsquellen":
 110 "BT Mac 10: BACnet MS/TP Fieldbus"
 - mit dem BOP-2 bei der Grundinbetriebnahme unter Schritt "MAc PAr P15":
 P F bAc
 - über die Parameternummer: p0015 = 110
- 2. Stellen Sie die Umrichteradresse ein.
- 3. Weitere Anpassungen nehmen Sie anhand der in den folgenden Absätzen aufgelisteten Parameter vor.
- 4. Sichern Sie die Einstellungen netzausfallsicher, wenn Sie mit Startdrive arbeiten.

Damit haben Sie die Kommunikation über BACnet eingestellt.

Einstellungen durch "BT Mac 10: BACnet MS/TP Feldbus"

Feldbus Protokollauswahl p2030 = 5

Baudrate p2020 = 8, 38400 bit/s

Einstellbereich: 9600 bit/s ... 76800 bit/s

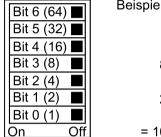
Feldbus-Überwachungszeit p2040 = 1000 ms

Einstellbereich: 0 ms ... 1999999 ms

Die Feldbus-Überwachungszeit muss umso größer sein, je mehr Slaves am Netz hängen.

Wenn innerhalb von einem Zyklus der Feldbus-Überwachungszeit keine Prozessdaten übertragen werden, schaltet der Umrichter mit Störung F01910 ab.

p2040 = 0 ⇒ Busüberwachung abgeschaltet.


5.5.1.1 Adresse einstellen

Gültiger Adressbereich: 0 ... 127

Bei Adresse 0 antwortet der Umrichter auf einen Broadcast.

Sie haben folgende Möglichkeiten zum Einstellen der BACnet-Adresse:

Mit dem Adress-Schalter auf der Control Unit

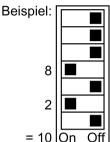


Bild 5-12 Adress-Schalter mit Beispiel für die Busadresse 10

Der Adress-Schalter hat Vorrang vor den anderen Einstellungen.

 Mit Startdrive oder einem Operator Panel über Parameter p2021 (Werkseinstellung: p2021 = 0)

p2021 ist nur änderbar, wenn der Adress-Schalter auf 0 steht.

Sichern Sie die Einstellungen netzausfallsicher, wenn Sie mit Startdrive arbeiten.

Die Position des Adress-Schalters finden Sie in der Betriebsanleitung des Umrichters.

Handbücher und technischer Support (Seite 232)

Geänderte Bus-Adresse aktivieren

Vorgehensweise

- 1. Stellen Sie die Adresse wie oben beschrieben ein.
- 2. Schalten Sie die Versorgungsspannung des Umrichters aus.
- 3. Warten Sie bis alle LED auf dem Umrichter dunkel sind.
- 4. Schalten Sie die Versorgungsspannung des Umrichters wieder ein.

Nach dem Einschalten sind Ihre Einstellungen wirksam.

Damit haben Sie die Bus-Adresse eingestellt.

5.5.1.2 Parameter zum Einstellen der Kommunikation über BACnet

Allgemeine Einstellungen

Verarbeitungszeiten p2024[0 ... 2]

p2024[0]: 0 ms ... 10000 ms, maximale Verarbeitungszeit (APDU-Timeout), Werkseinstellung = 6000 ms, p2024[1 ... 2]: ohne Bedeutung

BACnet Kommunikationsparameter p2025[0 ... 3]

- p2025[0]: 0 ... 4194303, Device Objekt Instanz Nummer, Werkseinstellung = 1
- p2025[1]: 1 ... 10, Maximum Info Frames, Werkseinstellung = 5
- p2025[2]: 0 ... 39, Anzahl APDU Retries (Wiederholversuche nach Fehler-Telegrammen), Werkseinstellung = 3
- p2025[3]: 1 ... 127, maximale Master Adresse, Werkseinstellung = 32

Einstellung des COV_Increments p2026[0 ... 74]

(COV = Change of values) 0 ... 4194303.000, Werkseinstellung = 1. Maximal 32 sind COV zulässig.

COV_Increment: Wertänderung des "Present Value" einer Objekt-Instanz, bei welcher der Server eine UnConfirmedCOV_Notification oder ConfirmedCOV_Notification überträgt.

Über diese Parameter können Sie einstellen, bei welchen Wertänderungen der Umrichter eine UnConfirmedCOV_Notification oder ConfirmedCOV_Notification senden soll.

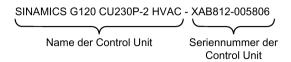
Die Werkseinstellung 1 bedeutet, dass der Umrichter eine UnConfirmedCOV_Notification oder ConfirmedCOV_Notification sendet, wenn sich der betrachtete Wert z. B. bei einem Regelbereich von 0 ... 10 V um einen Betrag ≥ 1 ändert.

Voraussetzung für das Senden ist ein aktiver SubscribeCOV_Dienst für die jeweilige Objekt-Instanz.

Sie können das COV_Increment auch über die Objekteigenschaft "COV_Increment" des jeweiligen Analog-Input, Analog- Output oder Analog-Value einstellen.

BACnet Sprachauswahl p2027

deutsch/englisch - wird erst nach Power AUS/EIN wirksam


Feldbus Fehlerstatistik r2029

Anzeige von Empfangsfehlern an der Feldbus-Schnittstelle

Gerätenamen - Voreinstellung, Namen ändern, Werkseinstellung wieder herstellen

Die Control Unit hat in BACnet einen eindeutigen Namen, der zur Identifikation beim Gerätetausch usw. erforderlich ist.

Der Gerätename wird beim ersten Hochlauf vorbelegt. Er ist wie folgt aufgebaut:

Der Name ist im ASCII-Format in den 79 Indices von p7610 dargestellt.

Gerätenamen ändern - Vorgehensweise

- Zum Ändern überschreiben Sie den p7610 entweder direkt im Umrichter oder Sie schreiben den Namen über die Steuerung mit dem "Objekt Write Property Object Device, Object Name".
- 2. Sichern Sie die Einstellungen netzausfallsicher, wenn Sie mit Startdrive arbeiten.
- 3. Schalten Sie zum Aktivieren des Namens die Versorgungsspannung des Umrichters aus.
- 4. Warten Sie, bis alle LED auf dem Umrichter dunkel sind.
- 5. Schalten Sie die Versorgungsspannung des Umrichters wieder ein.

Nach dem Einschalten sind Ihre Einstellungen wirksam.

Damit haben Sie den Namen geändert. □

Der Gerätename wird durch Rücksetzen auf Werkseinstellung nicht geändert.

Wenn Sie den Namen wieder auf den ursprünglichen Wert zurücksetzen wollen, setzen Sie p7610[0] = 0 und aktivieren ihn wie oben beschrieben.

Analogausgänge verschalten

Wenn Sie die Kommunikation über BACnet einstellen (p2030 = 5) werden die Analogausgänge des Umrichters intern mit den Feldbusanalogausgängen verschaltet:

- p0771[0] = 791[0]
- p0771[1] = 791[1].

Die Werte für p0791[0] und p0791[1] werden über die Objekte ANALOG OUTPUT 0 und ANALOG OUTPUT 1 geschrieben. Verschaltungen der Parameter p0791 mit anderen Quellen werden abgewiesen.

Das heißt, die Steuerung gibt anlagenspezifische Werte über die Analogausgänge des Umrichters aus.

Wenn Sie dennoch einen umrichterspezifischen Wert anzeigen wollen, müssen Sie die entsprechende Verdrahtung anpassen.

Beispiel

- AO 0 soll den über die Steuerung mit Objekt ANALOG OUTPUT 0 geschriebenen Wert anzeigen. In diesem Fall sind keine weiteren Einstellungen im Umrichter erforderlich.
- AO 1 soll den geglätteten Stromistwert anzeigen. Dazu müssen Sie p0771[1] = 27 (r0027 geglätteter Stromistwert) einstellen.
 In diesem Fall führt schreibender Zugriff über das Objekt ANALOG OUTPUT 1 auf p0971[1] zu einer Fehlermeldung in der Steuerung.

Hinweis

Rücksetzen auf Werkseinstellung bei BACnet

Wenn Sie Kommunikation über BACnet (p2030 = 5) eingestellt haben, werden bei Rücksetzen auf Werkseinstellung die Analogausgänge wieder auf p0771[0] = 791[0] und p0771[1] = 791[1] verschaltet.

5.5.2 Unterstützte Dienste und Objekte

Vom Umrichter genutzte BIBBs

Die BIBBs (BIBB: **B**ACnet Interoperability **B**uilding **B**lock) sind eine Sammlung von einem oder mehreren BACnet-Diensten (Services). Die BACnet-Dienste sind in A- und B-Devices unterteilt. Ein A-Device arbeitet als Client und ein B-Device als Server.

Der Umrichter ist ein Server und arbeitet somit als B-Device, als "BACnet Application Specific Controller" (B-ASC).

Er nutzt die nachfolgend aufgeführten BIBBs.

Übersicht über die genutzten BIBB und die zugehörigen Dienste

Kurzbezeichnung	BIBB	Dienst
DS-RP-B	Data Sharing-ReadProperty-B	ReadProperty
DS-RPM-B	Data Sharing-ReadMultipleProperty-B	ReadPropertyMultiple
DS-WP-B	Data Sharing-WriteProperty-B	WriteProperty
DM-DDB-B	Device Management-Dynamic Device	Who-Is
	Binding-B	• I-Am
DM-DOB-B	Device Management-Dynamic Object	Who-Has
	Binding-B	I-Have
DM-DCC-B	Device Management- DeviceCommunicationControl-B	DeviceCommunicationControl
DS-COV-B	Data Sharing-COV-B	SubscribeCOV,
		ConfirmedCOVNotification,
		UnConfirmedCOVNotification

5.5 Kommunikation über BACnet MS/TP - nur CU230P-2 HVAC / BT

Der Umrichter kann gleichzeitig bis zu 32 SubscribeCOV-Dienste bearbeiten. Diese können sich alle auf die gleiche oder auf unterschiedliche Objekt-Instanzen beziehen.

SubscribeCOV überwacht Eigenschaftsänderungen von folgenden Objekten:

- Analog Input (Alxx),
- Analog Output (AOxx),
- Analog Value (AVxx),
- Binary Value (BVxx) und
- Multi-state Input (MSIxx)

Hinweis

SubscribeCOV-Dienste sind nicht remanent; d. h., der Master muss beim Neustart der CU die SubscribeCOV-Dienste erneut initiieren.

Kennziffern der unterstützten Objekttypen in BACnet

Objekttyp Kennziffer für BACnet- Objekttyp		Objekttyp	Kennziffer für BACnet- Objekttyp
Device Object	8	Analog Output Object	1
Binary Input Object	3	Analog Value Object	2
Binary Output Object	4	Multi-State Input Object	13
Binary Value Object	5	Octet String Values	47
Analog Input Object	0		

Objekteigenschaften des Objekttyps "Device"

Object_Identifier	Application_Software_Version	APDU_Timeout
Object_Name	Protocol_Version	Number_Of_APDU_Retries
Object_Type	Protocol_Revision	Max Master
System_Status	Protocol_Services_Supported	Max Info Frames
Vendor_Name	Protocol_Object_Types_Supported	Device Address Binding
Vendor_Identifier	Object_List	Database Revision
Model_Name	Max_APDU_Length_Accepted 1)	
Firmware_Revision	Segmentation_Supported ²⁾	

¹⁾ Länge = 480, 2) nicht unterstützt

Objekteigenschaften der weiteren Objekttypen

Objekt -				Obje	kttyp			
Eigenschaft	Binary Input	Binary Output	Binary Value	Analog Input	Analog Output	Analog Value	Multi-State Input	Octet String values
Object_Identifier	Х	Х	Х	Х	Х	Х	Х	Х
Object_Name	Х	Х	Х	Х	Х	Х	Х	Х
Object_Type	Χ	Х	Х	Х	Х	Х	Х	Х
Present_Value	Х	Х	Х	Х	Х	Х	Х	Х
Description	Х	Х	Х	Х	Х	Х	Х	
Status_Flags	Χ	Х	Х	Х	Х	Х	Х	Х
Event_State	Х	Х	Х	Х	Х	Х	Х	
Out_Of_Service	Χ	Х	Х	Х	Х	Х	Х	
Units				Х	Х	Х		
Priority_Array		Х	X*		Х	X*		
Relin- quish_Default		Х	X*		Х	X*		
Polarity	Χ	Х						
Active_Text	Х	Х	Х					
Inactive_Text	Х	Х	Х					
COV_Increment				Х	Х	Х		
State_Text							Х	
Num- ber_of_States							Х	

^{*} nur für Befehlswerte (Zugriffstyp C)

Hinweis

Für den Zugriffstyp gibt es die Ausprägungen

- C: Commandable (ausführbar)
- R: Readable (lesbar)
- W: Writable (schreibbar)

Binary Input Objects

Instanz- ID	Objekt-Name	Beschreibung	Mögliche Werte	Text aktiv / Text inaktiv	Zugriffstyp	Parameter
BI0	DI0 ACT	Zustand von DI 0	ON/OFF	ON/OFF	R	r0722.0
BI1	DI1 ACT	Zustand von DI 1	ON/OFF	ON/OFF	R	r0722.1
BI2	DI2 ACT	Zustand von DI 2	ON/OFF	ON/OFF	R	r0722.2
BI3	DI3 ACT	Zustand von DI 3	ON/OFF	ON/OFF	R	r0722.3
BI4	DI4 ACT	Zustand von DI 4	ON/OFF	ON/OFF	R	r0722.4
BI5	DI5 ACT	Zustand von DI 5	ON/OFF	ON/OFF	R	r0722.5
BI7	DI7 ACT	Zustand von Al 1 - verwendet als DI	ON/OFF	ON/OFF	R	r0722.11
BI8	DI8 ACT	Zustand von Al 2 - verwendet als DI	ON/OFF	ON/OFF	R	r0722.12
BI10	DO0 ACT	Zustand von DO 0 (Relais 1)	ON/OFF	ON/OFF	R	read r747.0
BI11	DO1 ACT	Zustand von DO 1 (Relais 2)	ON/OFF	ON/OFF	R	read r747.1
BI12	DO2 ACT	Zustand von DO2 (Relais 3)	ON/OFF	ON/OFF	R	read r747.2

Binary Output Objects

Instanz- ID	Objekt-Name	Beschreibung	Mögliche Werte	Text aktiv / Text inaktiv	Zugriffstyp	Parameter
BO0	DO0 CMD	Steuert DO 0 (Relais 1)	ON/OFF	ON/OFF	С	p0730
BO1	DO1 CMD	Steuert DO 1 (Relais 2)	ON/OFF	ON/OFF	С	p0731
BO2	DO2 CMD	Steuert DO 2 (Relais 3)	ON/OFF	ON/OFF	С	p0732

Binary value Objects

Instanz- ID	Objekt-Name	Beschreibung	Mögliche Werte	Text aktiv	Text inaktiv	Zu- griffs- typ	Parameter
BV0	RUN/ STOP ACT	Umrichterzustand unabhängig von der Befehlsquelle	RUN / STOP	STOP	RUN	R	r0052.2
BV1	FWD/ REV	Drehrichtung unabhängig von der Befehlsquelle	REV / FWD	FWD	REV	R	r0052.14
BV2	FAULT ACT	Störung des Umrichters	FAULT / OK	FAULT	OK	R	r0052.3
BV3	WARN ACT	Warnung des Umrichters	WARN / OK	WARN	OK	R	r0052.7
BV4	HAND/ AUTO ACT	Zeigt die Quelle der Umrichtersteu- erung Hand/Auto	AUTO / HAND	AUTO	LOCAL	R	r0052.9
BV7	CTL OVERRIDE ACT	ACT zeigt die Steuerung des Umrichters von der BACnet Override- Steuerung über BV93 an.	ON / OFF	0	1	R	r2032[10]
		Beachten Sie, dass die Betriebsart "Hand" des Bedienfelds höhere Priorität als die BACnet Override-Steuerung hat.					

Instanz- ID	Objekt-Name	Beschreibung	Mögliche Werte	Text aktiv	Text inaktiv	Zu- griffs- typ	Parameter
BV8	AT SET- POINT	Sollwert erreicht	YES / NO	YES	NO	R	r0052.8
BV9	AT MAX FREQ	Maximaldrehzahl erreicht	YES / NO	YES	NO	R	r0052.10
BV10	DRIVE READY	Umrichter Betriebsbereit	YES/ NO	YES	NO	R	r0052.1
BV15	RUN COM ACT	ACT zeigt den Zustand des EIN- Befehls, unabhängig von der Quelle	YES / NO	0	1	R	r2032[0]
BV16	HIB MOD ACT	ACT bedeutet, der Umrichter arbeitet im Energiesparmodus.	ON / OFF	0	1	R	r2399[1]
BV17	ESM MOD	ACT bedeutet, der Umrichter arbeitet im Notfallbetrieb	ON / OFF	0	1	R	r3889[0]
BV20	RUN/ STOP CMD	ON-Befehl für den Umrichter (bei Steuerung über BACnet)	RUN / STOP	0	1	С	r0054.0
BV21	FWD/ REV CMD	Drehrichtung umkehren (bei Steuerung über BACnet)	REV / FWD	0	1	С	r0054.11
BV22	FAULT RESET	Störung quittieren (bei Steuerung über BACnet)	RESET / NO	0	1	С	r0054.7
BV24	CDS	Local/Remote	Local / Remote	YES	NO	С	r0054.15
BV26	RUN ENA CMD	Umrichter-Betrieb freigeben		ENABL ED	DISABL ED	С	r0054.3
BV27	OFF2	Zustand OFF2	RUN/ STOP	0	1	С	r0054.1
BV28	OFF3	Zustand OFF3 Hinweis: BV28 setzt die Bits r0054.4, r0054.5 und r0054.6	RUN / STOP	0	1	С	r0054.2
BV50	ENABLE PID	Technologieregler freigeben	ENABLED / DISABLED	ENABL ED	DISABL ED	С	p2200
BV51	ENABLE PID 0	Technologieregler 0 freigeben	ENABLED / DISABLED	ENABL ED	DISABL ED	С	p11000
BV52	ENABLE PID 1	Technologieregler 1 freigeben	ENABLED / DISABLED	ENABL ED	DISABL ED	С	p11100
BV53	ENABLE PID 2	Technologieregler 2 freigeben	ENABLED / DISABLED	ENABL ED	DISABL ED	С	p11200
BV90	LOCAL LOCK	Umrichtersteuerung über HAND (Bedienfeld) sperren		LOCK	UNLOC K	С	p0806
BV93	CTL OVERRIDE CMD	Umrichtersteuerung über BACnet Override-Steuerung	ON / OFF	0	1	С	r0054.10

Analog Input Objects

Instanz- ID	Objekt-Name	Beschreibung	Einheit	Bereich	Zugriffs- typ	Parameter
AI0	ANALOG IN 0	Eingangssignal von Al0	V/mA	umrichterabhängig	R	r0752[0]
Al1	ANALOG IN 1	Eingangssignal von Al1	V/mA	umrichterabhängig	R	r0752[1]
Al2	ANALOG IN 2	Eingangssignal von Al2	V/mA	umrichterabhängig	R	r0752[2]
Al3	ANALOG IN 3	Eingangssignal von Al3	V/mA	umrichterabhängig	R	r0752[3]
Al10	AI 0 SCALED	Normiertes Eingangssignal von Al 0	%	umrichterabhängig	R	r0755[0]
Al11	AIN 1 SCALED	Normiertes Eingangssignal von Al 1	%	umrichterabhängig	R	r0755[1]
Al12	AIN 2 SCALED	Normiertes Eingangssignal von Al 2	%	umrichterabhängig	R	r0755[2]
Al13	AIN 3 SCALED	Normiertes Eingangssignal von Al 3	%	umrichterabhängig	R	r0755[3]

Analog Output Objects

Instanz- ID	Objekt-Name	Beschreibung	Einheit	Bereich	Zugriffs- typ	Parameter
AO0	ANALOG OUTPUT 0	Wert von AO0	%	umrichterabhängig	С	p0791.0
AO1	ANALOG OUTPUT 1	Wert von AO1	%	umrichterabhängig	С	p0791.1

Analog Value Objects

Instanz-	Objekt-Name	Beschreibung	Einheit	Bereich	Zugriffs- typ	Parameter
AV0	OUT FREQ HZ	Ausgangsfrequenz (Hz)	Hz	umrichterabhängig	R	r0024
AV1	OUT FREQ PCT	Ausgangsfrequenz (%)	%	umrichterabhängig	R	HIW
AV2	OUTPUT SPEED	Motordrehzahl	RPM	umrichterabhängig	R	r0022
AV3	DC BUS VOLT	Zwischenkreisspannung.	V	umrichterabhängig	R	r0026
AV4	OUTPUT VOLT	Ausgangsspannung	V	umrichterabhängig	R	r0025
AV5	CURRENT	Motorstrom	Α	umrichterabhängig	R	r0027
AV6	TORQUE	Motordrehmoment	Nm	umrichterabhängig	R	r0031
AV7	POWER	Motorleistung	kW	umrichterabhängig	R	r0032
AV8	DRIVE TEMP	Kühlkörpertemperatur	°C	umrichterabhängig	R	r0037
AV9	MOTOR TEMP	Gemessene oder berechnete Motortemperatur	°C	umrichterabhängig	R	r0035
AV10	KWH NR	Kumulierter Energieverbrauch des Umrichters (nicht rücksetzbar!)	kWh	umrichterabhängig	R	r0039
AV12	INV RUN TIME	Betriebsstunden des Motors (wird durch Eingabe von "0" zurückgesetzt)	h	0 4294967295	W	p0650

Instanz- ID	Objekt-Name	Beschreibung	Einheit	Bereich	Zugriffs- typ	Parameter
AV13	INV Model	Code-Nummer des Power Modules		umrichterabhängig	R	r0200
AV14	INV FW VER	Firmware-Version		umrichterabhängig	R	r0018
AV15	INV POWER	Bemessungsleistung des Umrichters	kW	umrichterabhängig	R	r0206
AV16	SPEED STPT 1	Bezugsdrehzahl des Umrichters	RPM	6.0 210000	W	p2000
AV17	FREQ SP PCT	Sollwert 1 (bei Steuerung über BACnet)	%	-199.99 199.99	С	HSW
AV18	ACT FAULT	Nummer der anstehenden Störung		umrichterabhängig	R	r0947[0]
AV19	PREV FAULT 1	Nummer der letzten Störung		umrichterabhängig	R	r0947[1]
AV20	PREV FAULT 2	Nummer der vorletzten Störung		umrichterabhängig	R	r0947[2]
AV21	PREV FAULT 3	Nummer der drittletzten Störung		umrichterabhängig	R	r0947[3]
AV22	PREV FAULT 4	Nummer der viertletzten Störung		umrichterabhängig	R	r0947[4]
AV25	SEL STPT	Befehl zum Auswählen der Sollwertquelle		0 32767	W	p1000
AV28	AO1 ACT	Signal von AO 1	mA	umrichterabhängig	R	r0774.0
AV29	AO2 ACT	Signal von AO 1	mA	umrichterabhängig	R	r0774.1
AV30	MIN Speed	Minimaldrehzahl	RPM	0.000 - 19500.000	W	p1080
AV31	MAX Speed	Maximaldrehzahl	RPM	0.000 210000.00 0	W	p1082
AV32	ACCEL TIME	Hochlaufzeit	s	0.00 999999.0	W	p1120
AV33	DECEL TIME	Rücklaufzeit	s	0.00 999999.0	W	p1121
AV34	CUR LIM	Stromgrenze	Α	umrichterabhängig	R	p0640
AV39	ACT WARN	Anzeige der anstehenden War- nung		umrichterabhängig	R	r2110[0]
AV40	PREV WARN 1	Anzeige der letzten Warnung		umrichterabhängig	R	r2110[1]
AV41	PREV WARN 2	Anzeige der vorletzten Warnung		umrichterabhängig	R	r2110[2]
AV5000	RAMP UP TIME	Technologieregler Hochlaufzeit	s	0 650	W	p2257
AV5001	RAMP DOWN TIME	Technologieregler Rücklaufzeit	s	0 650	W	p2258
AV5002	FILTER TIME	Technologieregler Istwertfilter Zeitkonstante	s	0 60	W	p2265
AV5003	DIFF TIME	Technologieregler Differenziation Zeitkonstante	s	0 60	W	p2274
AV5004	PROP GAIN	Technologieregler Proportional- verstärkung	s	0 1000	W	p2280
AV5005	INTEG TIME	Technologieregler Nachstellzeit	s	0 1000	W	p2285
AV5006	OUTPUT MAX	Technologieregler Maximalbe- grenzung	%	- 200 200	W	p2291
AV5007	OUTPUT MIN	Technologieregler Minimalbe- grenzung	%	- 200 200	W	p2292
AV5100	RAMP UP TIME 0	Technologieregler 0 Hochlaufzeit	S	0 650	W	p11057

5.5 Kommunikation über BACnet MS/TP - nur CU230P-2 HVAC / BT

Instanz- ID	Objekt-Name	Beschreibung	Einheit	Bereich	Zugriffs- typ	Parameter
AV5101	RAMP DOWN TIME 0	Technologieregler 0 Rücklauf- zeit	s	0 650	W	p11058
AV5102	FILTER TIME 0	Technologieregler 0 Istwertfilter Zeitkonstante	s	0 60	W	p11065
AV5103	DIFF TIME 0	Technologieregler 0 Differenziation Zeitkonstante	s	0 60	W	p11074
AV5104	PROP GAIN 0	Technologieregler 0 Proportio- nalverstärkung	s	0 1000	W	p11080
AV5105	INTEG TIME 0	Technologieregler 0 Nachstell- zeit	s	0 1000	W	p11085
AV5106	OUTPUT MAX 0	Technologieregler 0 Maximal- begrenzung	%	- 200 200	W	p11091
AV5107	OUTPUT MIN 0	Technologieregler 0 Minimalbe- grenzung	%	- 200 200	W	p11092
AV5200	RAMP UP TIME 1	Technologieregler 1 Hochlaufzeit	s	0 650	W	p11157
AV5201	RAMP DOWN TIME 1	Technologieregler 1 Rücklauf- zeit	s	0 650	W	p11158
AV5202	FILTER TIME 1	Technologieregler 1 Istwertfilter Zeitkonstante	s	0 60	W	p11165
AV5203	DIFF TIME 1	Technologieregler 1 Differenziation Zeitkonstante	s	0 60	W	p11174
AV5204	PROP GAIN 1	Technologieregler 1 Proportio- nalverstärkung	s	0 1000	W	p11180
AV5205	INTEG TIME 1	Technologieregler Nachstellzeit	s	0 1000	W	p11185
AV5206	OUTPUT MAX 1	Technologieregler 1 Maximal- begrenzung	%	- 200 200	W	p11191
AV5207	OUTPUT MIN 1	Technologieregler 1 Minimalbe- grenzung	%	- 200 200	W	p11192
AV5300	RAMP UP TIME 2	Technologieregler 2 Hochlaufzeit	s	0 650	W	p11257
AV5301	RAMP DOWN TIME 2	Technologieregler 2 Rücklaufzeit	s	0 650	W	p11258
AV5302	FILTER TIME 2	Technologieregler 2 Istwertfilter Zeitkonstante	s	0 60	W	p11265
AV5303	DIFF TIME 2	Technologieregler 2 Differenziation Zeitkonstante	s	0 60	W	p11274
AV5304	PROP GAIN 2 Technologieregler 2 Proportionalverstärkung		s	0 1000	W	p11280
AV5305	INTEG TIME 2 Technologieregler 2 Nachstell-zeit		s	0 1000	W	p11285
AV5306	OUTPUT MAX 2	Technologieregler 2 Maximal- begrenzung	%	- 200 200	W	p11291
AV5307	OUTPUT MIN 2	Technologieregler 2 Minimalbe- grenzung	%	- 200 200	W	p11292

Multi-State Input Objects

Instanz-ID	Objekt-Name	Beschreibung	Mögliche Werte	Zugriffstyp	Parameter
MSI0	FAULT_1	Störnummer 1	siehe Listenhandbuch "Liste der Stö-	R	r0947[0]
MSI1	FAULT_2	Störnummer 2	rungen und Warnungen"	R	r0947[1]
MSI2	FAULT_3	Störnummer 3		R	r0947[2]
MSI3	FAULT_4	Störnummer 4		R	r0947[3]
MSI4	FAULT_5	Störnummer 5		R	r0947[4]
MSI5	FAULT_6	Störnummer 6		R	r0947[5]
MSI6	FAULT_7	Störnummer 7		R	r0947[6]
MSI7	FAULT_8	Störnummer 8		R	r0947[7]
MSI8	WARNING_1	Warnnummer 1		R	r2110[0]
MS9	WARNING_2	Warnnummer 2		R	r2110[1]
MSI10	WARNING_3	Warnnummer 3		R	r2110[2]
MSI11	WARNING_4	Warnnummer 4		R	r2110[3]
MSI12	WARNING_5	Warnnummer 5		R	r2110[4]
MSI13	WARNING_6	Warnnummer 6		R	r2110[5]
MSI14	WARNING_7	Warnnummer 7		R	r2110[6]
MSI15	WARNING_8	Warnnummer 8		R	r2110[7]

5.5.3 Azyklische Kommunikation (Allgemeiner Parameterzugriff) über BACnet

Die azyklische Kommunikation, bzw. der allgemeine Parameterzugriff, erfolgt über die BACnet-Objekte DS47IN und DS47OUT.

Die azyklische Kommunikation nutzt die Octet String Values-Objekte OSV0 und OSV1.

Instanz-ID	Objekt-Name	Beschreibung	Zugriffstyp
OSV0	DS47IN	maximale Länge 242 davon zwei Bytes Header, 240	W
OSV1	DS47OUT	Bytes Nutzdaten	R

Die OSV sind wie folgt aufgebaut:

Function Code	Auftragslänge	Nutzdaten
2F (1 Byte)	(1 Byte)	maximal 240 Bytes

Parameterauftrag mit dem OSV0 schreiben und mit OSV1 lesen

Zum Lesen des Parameters r0002 schreiben Sie folgende Werte in das Present-Value-Fenster des OSV0

Tabelle 5-33 Parameterauftrag über OSV0 schreiben

	Byte	Beschreibung
2F h	1	Funktionscode 2F h (47),
0A h	2	Auftragslänge 10 Bytes (OA h)
80 h	3	Auftragsreferenz = 80 h
01 h	4	Auftragskennung = 1 h
01 h	5	DO-Id = 1
01 h	6	Anzahl Parameter = 1
10 h	7	Attribut
01 h	8	Anzahl der Elemente = 1
0002 h	9,10	Parameternummer = 2
0000 h	11,12	Subindex = 0

Wenn der Auftrag erfolgreich verarbeitet wurde, können Sie die Antwort genau einmal aus dem Present-Value-Fenster des OSV1 auslesen:

Tabelle 5-34 Parameterinhalt über OSV1 lesen

	Byte	Beschreibung
2F h	1	Funktionscode 2F h (47)
08 h	2	Antwortlänge 8 Bytes
80 h	3	Auftragsreferenz = 80 h
01 h	4	Auftragskennung = 1 h
01 h	5	DO-Id = 1
01 h	6	Anzahl Parameter = 1
10 h	7	Format
01 h	8	Anzahl der Elemente = 1
001F h	9,10	Parameterwert 1F h = 31

Wenn die Antwort noch nicht vorliegt, erhalten Sie über das Present-Value-Fenster des OSV1 folgende Meldung:

Tabelle 5- 35 Parameterinhalt über OSV1 lesen

	Byte	Beschreibung
2F h	1	Funktionscode 2F h (47)
00 h	2	Antwortlänge 0 (Fehler)
0004 h	3,4	Fehlercode 4 h (Antwort noch nicht vorhanden)

Wenn die Antwort noch einmal lesen möchten, erhalten Sie über das Present-Value-Fenster des OSV1 folgende Meldung:

Tabelle 5- 36 Parameterinhalt wiederholt über OSV1 lesen

	Byte	Beschreibung
2F h	1	Funktionscode 2F h (47)
00 h	2	Antwortlänge 0 (Fehler)
0002 h	3,4	Fehlercode 2 h (Invalid State)

Übersicht über die Fehlercodes

- 1 h: Invalid Length (ungültige Länge)
- 2 h: Invalid State (Aktion ist im aktuellen Umrichterzustand nicht erlaubt)
- 3 h: Invalid function Code (FC = 2 hex)
- 4 h: Response not ready (Die Antwort ist noch nicht erfolgt)
- 5 h: Internal Error (allgemeiner Systemfehler)

Fehlerhafte Zugriffe auf Parameter über den Datensatz 47 weden in den Objekten OSV0 und OSV1 protokolliert.

5.6 Kommunikation über P1 - nur CU230P-2 HVAC, CU230P-2 BT

P1 ist eine asynchrone Master-Slave-Kommunikation zwischen einem so genannten Field Cabinet (Master) und den FLN-Devices (Slaves). FLN steht dabei für "Floor level network".

Der Master spricht die einzelnen Slaves individuell an. Ein Slave antwortet nur, wenn ihn der Master anspricht. Kommunikation zwischen den Slaves ist nicht möglich.

Ein Field Cabinet kann mehrere FLN-Ports besitzen. An jeden FLN-Port können Sie bis zu 32 FLN-Devices (Slaves) anschließen.

Einstellungen in der Steuerung

Im Field Cabinet müssen Sie für jeden Slave einen so genannten "Logical controller (LCTR) point" installieren. Außerdem müssen Sie im Field Cabinet die "Point Numbers" für die Kommunikation festlegen.

Eine Übersicht über die "Point Numbers" finden Sie auf den folgenden Seiten.

5.6.1 Grundeinstellungen für die Kommunikation über P1

Übersicht

Vorgehenweise

Um die Kommunikation über P1 einzustellen gehen Sie folgendermaßen vor:

- 1. Wählen Sie die Voreinstellung 114
 - mit Startdrive bei der Inbetriebnahme im Schritt "Voreinstellungen der Sollwerte/Befehlsquellen":

114 "BT Mac 14: Communication P1"

- mit dem BOP-2 bei der Grundinbetriebnahme unter Schritt "MAc PAr P15":
 P F P1
- über die Parameternummer: p0015 = 114

Nach der Wahl der Voreinstellung 114 stellt der Umrichter automatisch folgende Parameter ein:

- p2030 = 8: Feldbusprotokoll P1
- p2020 = 5: Baudrate 4800 bit/s
- p0840 = 2090.0: Der EIN/AUS1-Befehl ist mit Steuerwort 1, Bit 0 verschaltet
- p0852 = 2090.3: Das Signal für "Betrieb freigeben" ist mit Steuerwort 1, Bit 3 verschaltet
- p2103[0] = 2090.7: Das Signal für "Fehler quittieren" ist mit Steuerwort 1, Bit 7 verschaltet
- 2. Stellen Sie die Adresse ein.

Unabhängig von der eingestellten Adresse beantwortet jedes FLN-Device Telegramme mit der Adresse 99.

- 3. Weitere Anpassungen nehmen Sie anhand der in den folgenden Absätzen aufgelisteten Parameter vor.
- 4. Sichern Sie die Einstellungen netzausfallsicher, wenn Sie mit Startdrive arbeiten.

Damit haben Sie die Kommunikation über P1 eingestellt.

Weitere Parameter zum Anpassen der Kommunikation über P1

p2020 = 7: Baudrate 19200 bit/s

p1070 = 2050[1]: Hauptsollwert über Feldbus empfangen

p2051[0] = 52: Zustandswort über Feldbus senden

p2051[1] = 63: Drehzahl-Istwert über Feldbus senden

5.6.2 Adresse einstellen

Gültiger Adressbereich: 1 ... 99

Sie haben folgende Möglichkeiten zum Einstellen der Adresse:

• Mit dem Adress-Schalter auf der Control Unit

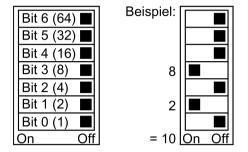


Bild 5-13 Adress-Schalter mit Beispiel für die Busadresse 10

Der Adress-Schalter hat Vorrang vor den anderen Einstellungen.

 Mit Startdrive oder einem Operator Panel über Parameter p2021 (Werkseinstellung: p2021 = 99).

p2021 ist nur änderbar, wenn im Adress-Schalter eine ungültige Adresse eingestellt ist.

Sichern Sie die Einstellungen netzausfallsicher, wenn Sie mit Startdrive arbeiten.

Die Position des Adress-Schalters finden Sie in der Betriebsanleitung des Umrichters.

Handbücher und technischer Support (Seite 232)

Geänderte Bus-Adresse aktivieren

Vorgehensweise

- 1. Stellen Sie die Adresse wie oben beschrieben ein.
- 2. Schalten Sie die Versorgungsspannung des Umrichters aus.
- 3. Warten Sie bis alle LED auf dem Umrichter dunkel sind.
- 4. Schalten Sie die Versorgungsspannung des Umrichters wieder ein.

Nach dem Einschalten sind Ihre Einstellungen wirksam.

Damit haben Sie die Bus-Adresse eingestellt.

5.6.3 Point Numbers

Im Umrichter sind die nachfolgend aufgeführten "Point Numbers" zur Kommunikation über P1 definiert. Die in den Tabellen angegebenen Werte beziehen sich auf SI-Einheiten.

Point	Descriptor	Default/	Units	Slope	Inter-	ند	IO Type	On Text	Off Text	CU Param / Word
No.		factory			cept	Туре		Rar	Range	Туре
7	CTLR ADDRESS	66		1	0	2	LAO_255	0 255	255	p2021
2	APPLICATION	2767		1	0	2	LAO_32k	0 32767	2767	[0]8668d
3	FREQ OUTPUT	0	ZH	0.04	-650	1*)	LAI_32k	-650 650	. 650	r0024
5	SPEED	0	RPM	1	-16250	1*)	LAI_32k	-16250 16250	. 16250	r0022
9	CURRENT	0	٧	0.05	0	1*)	LAI_32k	0 1638.4	538.4	r0027
7	TORQUE	0	MN	0.2	-3250	1*)	LAI_32k	-3250 3250	. 3250	r0031
8	ACTUAL PWR	0	МЖ	0.01	0	1	LAI_32k	0 327.67	27.67	r0032
6	TOTAL KWH	0	нмм	1	0	1	LAI_32k	0 32767	2767	r0039
13	DC BUS VOLTS	0	Λ	1	0		LAI_32k	0 32767	2767	r0026
14	REFERENCE	0	ZH	0.04	-650		LAI_32k	-650 650	. 650	r0020
16	RATED PWR	0	МЖ	0.01	0		LAI_32k	0 327.67	27.67	r0206
17	OUTPUT VOLTS	0	۸	1	0		LAI_32k	0 32767	2767	r0025
20	OVRD TIME	1	HRS	1	0	2	LAO_255	0	0 255	p8998[1]
21	AR MAX FREQ	0	-	1	0	1	LDI	MAX	NO	ZSW:10
22	CMD FWD REV	0		1	0	1	LDO	REV	FWD	STW:11
23	FWD REV	0		1	0	1	LDI	FWD	REV	ZSW:14
24	CMD START	0	-	1	0	1	LDO	START	STOP	STW:0
25	STOP RUN	0	-	1	0	1	LDI	RUN	STOP	ZSW:2
26	CONTROL MODE	1	-	1	0	1	LDI	SERIAL	LOCAL	ZSW:9
28	READY TO RUN	0		1	0	1	LDI	READY	OFF	ZSW:1
29	DAY NIGHT	0	1	1	0	_	ГРО	NIGHT	DAY	p8998[2]
30	CURRENT LMT	0.0	PCT	0.1	10.0	2	LAO_4k	0	400	p0640
31	ACCEL TIME 1	10.00	SEC	0.02	0	2	LAO_32k	0 650.00	50.00	p1120
32	DECEL TIME 1	10.00	SEC	0.02	0	2	LAO_32k	0	650.00	p1121
34	HAND AUTO	0	1	_	0	2	LDI	HAND	AUTO	r0807.0

5.6 Kommunikation über P1 - nur CU230P-2 HVAC, CU230P-2 BT

Point	Descriptor	Default/	Units	Slope	Inter-	Subpt.	IO Type	On Text	Off Text	CU Param / Word
No.		factory			cept	Туре		Rar	Range .	Туре
35	RUN ENABLE	1		1	0	1	LDO	ENABLE	OFF	STW:3
36	ENABLED	0		1	0	1	LDI	ON	OFF	ZSW:0
40	DIGITAL OUT 1	0			0	2	LDO	ON	OFF	p0730 / r747.0
41	DIGITAL OUT 2	0		1	0	2	LDO	ON	OFF	p0731 / r747.1
42	DIGITAL OUT 3	0		1	0	2	LDO	ON	OFF	p0732 / r747.2
45	ANALOG IN 1	0	PCT	0.1	-300.0	1*)	LAI_32k	-300	300 300	r0755[0]
46	ANALOG IN 2	0	PCT	0.1	-300.0	1*)	LAI_32k	-300	-300 300	r0755[1]
47	ANALOG OUT 1	0	PCT	0.1	-100.0	1	LAI_32k	-100 100	100	r0774[0]
48	ANALOG OUT 2	0	PCT	0.1	-100.0	1	LAI_32k	-100 100	100	r0774[1]
51	FREQ REF	0	PCT	0.006103515	0	1*)	LAO_32k	0	0 100	HSW
52	FREQ ACTUAL	0	PCT	0.012207031	-100.0	1*)	LAI_32k	-100.0 100.0	. 100.0	HIW
53	FREQ MAX	3000.00	ZH	0.02	1.00	1	LAO_32k	0.10 650.00	650.00	p2000 1/min à Hz
22	PID SP REF	0	PCT	0.024414063	-200.0	1	LAO_32k	-200.0 200.0	. 200.0	p2240
26	PID SP OUT	0	PCT	0.012207031	-100.0	1	LAI_32k	-100.0 100.0	. 100.0	r2250
25	PID UP LMT	100.0	PCT	0.024414063	-200.0	1	LAO_32k	-200.0 200.0	. 200.0	p2291
28	PID LO LMT	0	PCT	0.024414063	-200.0	1	LAO_32k	-200.0 200.0	. 200.0	p2292
29	PID OUTPUT	0	PCT	0.012207031	0	1	LAI_32k	-100.0 100.0	. 100.0	r2294
09	PI FEEDBACK	0	PCT	0.012207031	-100.0	1*)	LAI_32k	-100.0 100.0	. 100.0	r2266
61	P GAIN	1.000		0.01	0	2	LAO_32k	0 100.00	00.00	p2280
62	I GAIN	0	SEC	0.002	0	2	LAO_32k	00.09 0	30.00	p2285
63	D GAIN	0	-	0.002	0	2	LAO_32k	00.09 0	30.00	p2274
64	ENABLE PID	0	-	1	0	2	LDO	NO	OFF	p2200
99	FEEDBK GAIN	100.0	PCT	0.02	0	2	LAO_32k	0 50	500.00	p2269
89	LOW PASS	0	-	0.01	0	2	LAO_32k	9 0	60.00	p2265
71	DIGITAL IN 0	0	-	1	0	1	LDI	NO	OFF	r0722.0

Point	Point Descriptor	Default/ Units		Slope	Inter-	Subpt.	Subpt. IO Type	On Text	Off Text	On Text Off Text CU Param /
No.		factory			cept	Type		Range	ge	Word Type
72	DIGITAL IN 1	0		1	0	1	LDI	NO	OFF	r722.1
73	DIGITAL IN 2	0		1	0	1	LDI	NO	OFF	r722.2
74	DIGITAL IN 3	0	-	1	0	1	LDI	NO	OFF	r722.3
75	DIGITAL IN 4	0	1	1	0	1	LDI	NO	OFF	r722.4
92	DIGITAL IN 5	0		1	0	1	IDI	NO	OFF	r722.5
80	WDOG TIME	100	ms	10	0	2	LAO_8k	39 0	65530	p2040
83	INVERTER VER	Apr 50	-	0.01	0	2	LAI_32k	66.66 00.00	. 99.99	r0018
84	DRIVE MODEL	0	-	l	0	2	LAI_32k	0 32767	2767	r0200
06	ACTIVE FAULT	0		1	0	1*)	LAI_32k	032767	2767	r0947[0]
91	1st FAULT	0		1	0	1*)	LAI_32k	032767	2767	r0947[1]
92	2nd FAULT	0		1	0	1*)	LAI_32k	032767	2767	r0947[2]
93	3rd FAULT	0		1	0	1*)	LAI_32k	032767	2767	r0947[3]
94	FAULT	0		1	0	1	LDI	FAULT	OK	ZSW:3
92	FAULT ACK	0		1	0	1	LDO	ON	OFF	STW:7
96	WARNING	0		1	0	1	LDI	WARN	OK	ZSW:7
97	ACTIVE WARNING	0	-	1	0	1*)	LAI_32k	032767	2767	r2110[0]
98	RAM TO ROM	0		1	0	1	LDO	SAVE	DONE	p971/p10=30
66	ERROR STATUS	0	-	1	0	1*)	LAI_255	0 255	255	r947[0]

^{1*):} Aus Gründen der Kompatibilität können diese Subpoints Type 1 COV-Bereichsinformationen speichern. Um diese nichtflüchtig speichern zu können, wurde Point Number 98 RAM TO ROM implementiert.

5.6 Kommunikation über P1 - nur CU230P-2 HVAC, CU230P-2 BT

Kommunikation über CANopen

Allgemeine Informationen zu CAN

Allgemeine Informationen zu CAN finden Sie im Internet: CAN-Internetseiten (http://www.can-cia.org)

eine Erläuterung der CAN-Terminologie liefert das CANdictionary: CAN Downloads (http://www.can-cia.org/index.php?id=6).


Umrichter in ein CANopen-Netz einbinden

Zum Einbinden des Umrichters in ein CANopen-Netz empfehlen wir die EDS-Datei im Internet EDS (http://support.automation.siemens.com/WW/view/de/48351511).

Diese Datei ist die Beschreibungsdatei der SINAMICS G120-Umrichter für CANopen-Netze. Damit können Sie die Objekte des Geräteprofils CiA 402 nutzen.

Folgende Control Units, bzw. Umrichter besitzen eine CANopen-Schnittstelle

G120C CAN

Tabelle 6-1 Pinbelegung des Steckers

Signal	D Sub - Stecker X126 1 5 6 9
	1
CAN_L, CAN-Signal (dominant low)	2
CAN_GND, CAN-Masse	3
	4
(CAN _SHLD), Optionaler Schirm	5
(CAN_GND), Optionale Masse	6
CAN_H, CAN-Signal (dominant high)	7
	8
	9

Erden der CANopen-Control Unit

Die CAN-Masse (Pin 3) und die optionale Masse sind galvanisch vom Erdpotenzial der Anlage getrennt.

Der optionale Schirm (Pin 5) und das Steckergehäuse sind mit dem Erdpotenzial der Anlage verbunden.

CANopen-Funktionen des Umrichters

CANopen ist ein Kommunikationsprotokoll mit Linientopologie und arbeitet auf der Basis von Kommunikationsobjekten (COB).

SINAMICS G120-Umrichter mit CANopen-Schnittstelle verhalten sich gemäß der folgenden Standards:

- CiA 301 (Application Layer and Communication Profile)
- CiA 303-3 (Indicator Specification)
- CiA 306 (Electronic Data Sheet Specification for CANopen)
- CiA 402 (Device Profile for Drives and Motion Control)

Kommunikationsobjekte (COB)

Der Umrichter arbeitet mit folgenden Kommunikationsobjekten:

- NMT Netzwerkmanagement (NMT-Service) (Seite 172)
 Netzwerkmanagement-Objekte zur Steuerung der CANopen-Kommunikation und zur Überwachung der einzelnen Teilnehmer (Knoten), auf der Basis einer Master-Slave Beziehung.
- SDO SDO-Dienste (Seite 175)
 Servicedatenobjekte zum Lesen und Ändern von Parametern
- PDO PDO-Dienste (Seite 179)
 Prozessdatenobjekte zum Übertragen von Prozessdaten, TPDO zum senden, RPDO zum Empfangen
- SYNC
 Synchronisationsobjekte
- EMCY
 Zeitstempel und Fehlermeldungen

COB-ID

Ein Kommunikationsobjekt enthält die zu übertragenden Daten und eine eindeutige 11 Bit lange COB-ID. Die COB-ID legt auch die Priorität für die Abarbeitung der Kommunikationsobjekte fest. Grundsätzlich gilt, dass das Kommunikationsobjekt mit der niedrigsten COB-ID die höchste Priorität besitzt.

COB-ID für die einzelnen Kommunikationsobjekte

Nachfolgend finden Sie die Vorgaben für die COB-IDs der einzelnen Kommunikationsobjekte

• COB-ID_{NMT} = 0 nicht änderbar

• COB-ID_{SYNC} = frei Vorbelegt mit 80 hex

• COB-ID_{EMCY} = frei 80 hex + NAlleode-ID = COB-ID_{EMCY}

COB-ID_{TPDO} = frei Im Freien PDO-Mapping *)

• COB-ID_{RPDO} = frei Im Freien PDO-Mapping *)

• COB-ID_{TSDO} = 580 hex + Node-ID

• COB-ID_{RSDO} = 600 hex + Node-ID

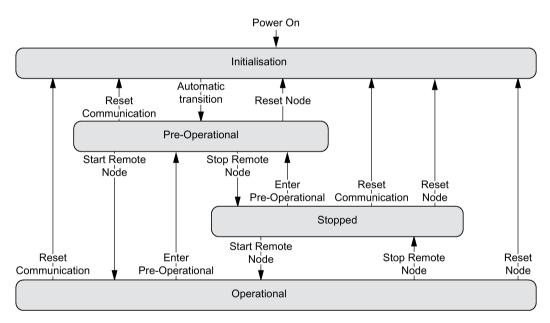
COB-ID_{Node Guarding/Heartbeat} = 700 hex + Node-ID

*) Predefined Connection Set (Seite 182)

6.1 Netzwerkmanagement (NMT-Service)

Das Netzwerkmanagement (NMT) ist knotenorientiert und folgt einer Master-Slave-Topologie.

Ein Knoten ist ein Master oder ein Slave.


Der Umrichter ist ein NMT-Slave und kann folgende Zustände einnehmen:

- Boot-up Service COB-ID = 700 hex + Node-ID
- Node Control Service COB-ID = 0 (siehe CANopen-Zustandsdiagramm)
 Der Übergang zwischen zwei Zuständen erfolgt über NMT-Services. Details zu den NMT-Services:

CiA 301 (Application Layer and Communication Profile (http://www.cancia.org/index.php?id=specifications).

Error Control Service COB-ID = 700 hex + Node-ID

CANopen Zustandsdiagramm

NMT-Zustände

Der Zustand des Umrichters wird in p8685 angezeigt.

Ändern können Sie den Umrichterzustand entweder über die Steuerung mit einem NMT-Telegramm unter Verwendung der unten aufgeführten command specifier oder im Umrichter über p8685.

Initialising: p8685 = 0, Command specifier = 0
 Nach Power On initialisiert sich der Umrichter. In der Werkseinstellung geht der Umrichter danach in den Zustand "Pre-Operational", dies entspricht auch dem CANopen Standard. Über p8684 können Sie einstellen, dass der Umrichter nach dem Bus-Hochlauf nicht in "Pre-Operational" sondern in Stopped oder in Operational wechselt.

- Pre-Operational, p8685 = 127 (Werkseinstellung), Command specifier = 128
 In diesem Zustand kann der Teilnehmer keine Prozessdaten (PDO) verarbeiten. Die Steuerng kann aber über SDO Parameter ändern oder den Umrichter betreiben. Das heißt, Sie können über SDO auch Sollwerte vorgeben.
- Operational, p8685 = 5; Command specifier = 1
 In diesem Zustand kann der Teilnehmer sowohl SDO als auch PDO verarbeiten.
- Stopped, p8685 = 4; Command specifier = 2
 In diesem Zustand kann der Teilnehmer weder PDO noch SDO verarbeiten. Einer der folgenden Befehle beendet den Zustand Stopped:
 - Enter Pre-Operational, p8685 = 127 (Werkseinstellung), Command specifier = 128
 - Start Remote Node
 - Reset Node, p8685 = 128, Command specifier = 129
 - Reset Communication, p8685 = 129, Command specifier = 130

Hinweis

Senden eines falschen NMT-Zustands

Wenn die Steuerung einen falschen NMT-Zustand an den Umrichter schickt, geht der Umrichter in den Zustand "Stopped".

Anforderung des Masters an einen oder mehrere Slaves

Der NMT-Master kann eine Anforderung gleichzeitig an einen oder mehrere Slaves richten. Dabei gilt:

- Anforderung an einen Slave:
 Die Steuerung spricht den Slave mit seiner Node-ID (1 ... 127) an.
- Anforderung an alle Slaves: Node-ID = 0

Boot-up Service

Das Boot-up Protokoll zeigt den Zustand des NMT-Slaves nach dem Hochlauf an (Werkseinstellung "Pre-Operational).

Bootup-Protokoll COB-ID = 700 hex + Node-ID. Es wird 1 Datenbyte mit dem Wert 0 übertragen.

NMT-Zustand nach Hochlauf

Über den Parameter p8684 stellen Sie den Zustand ein, in den der Umrichter nach dem Hochlauf geht:

- p8684 = 4 Stopped
- p8684 = 5 Operational
- p8684 = 127 Pre-Operational (Werkseinstellung)

Node Control Service

Die Node Control Services steuern die Zustandsübergänge

- Start Remote Node
 Befehl zum Übergang vom Kommunikationszustand Pre-Operational zu Operational. Erst
 in Operational kann der Antrieb Prozessdaten (PDO) senden und empfangen.
- Stop Remote Node
 Befehl zum Übergang von Pre-Operational oder Operational in Stopped. Im Zustand
 Stopped verarbeitet der Knoten nur noch NMT–Befehle.
- Enter Pre-Operational
 Befehl zum Übergang von Operational oder Stopped zu Pre-Operational. Im Zustand
 kann der Teilnehmer keine Prozessdaten (PDO) verarbeiten. Die Steuerung kann aber
 über SDO Parameter ändern oder den Umrichter betreiben. Das heißt, Sie können über
 SDO auch Sollwerte vorgeben.
- Reset Node
 Befehl zum Übergang von Operational, Pre-Operational oder Stopped zu Initialisation.
 Nach dem Befehl Reset Node setzt der Umrichter alle Objekte (1000 hex 9FFF hex) in den Zustand nach Spannung Ein zurück.
- Reset Communication
 Befehl zum Übergang von Operational, Pre-Operational oder Stopped zu Initialisation.
 Nach dem Befehl Reset Communication setzt der Umrichter alle Kommunikationsobjekte (1000 hex 1FFF hex) in den Zustand nach Spannung Ein zurück.

Command specifier und Node_ID zeigen die Übergangszustände und den angesprochenen Teilnehmer an.

Error Control Service

Die Überwachung der Kommunikation erfolgt über "Node Guarding / Life Guarding" oder "Heartbeat".

Einstellungsmöglichkeiten und Voreinstellungen.

Überwachung der Kommunikation einstellen (Seite 208)

6.2 SDO-Dienste

Mit den SDO-Diensten greifen Sie auf das Objektverzeichnis des angeschlossenen Antriebsgeräts zu. Eine SDO-Verbindung ist eine Peer-to-Peer-Kopplung zwischen SDO-Client und -Server.

Das Antriebsgerät mit seinem Objektverzeichnis ist ein SDO-Server.

Für den SDO-Kanal eines Antriebsgerätes sind die Identifier nach CANopen wie folgt festgelegt.

Empfangen: Server \leftarrow Client: COB-ID = 600 hex + Node ID Senden: Server \Rightarrow Client: COB-ID = 580 hex + Node ID

Eigenschaften

Die SDO haben folgende Eigenschaften:

- Eine SDO-Verbindung besteht nur in den Zuständen Preoperational und Operational
- Übertragung wird bestätigt
- Asynchrone Übertragung (entspricht der azyklischen Kommunikation über PROFIBUS DB)
- Übertragung von Werten > 4 Byte (normal transfer)
- Übertragung von Werten ≤ 4 Byte (expedited transfer)
- Alle Parameter des Antriebsgerätes lassen sich über SDO ansprechen

6.2.1 Über SDO auf SINAMICS-Parameter zugreifen

Mithilfe des SDO-Dienstes greifen Sie auf die SINAMICS-Parameter zu. Dazu nutzen Sie die Objekte 2000 hex ... 470F hex des herstellerspezifischen Bereichs des Objektverzeichnisses.

Da Sie über diesen Bereich nicht alle Parameter direkt ansprechen können, benötigen Sie für einen SDO-Auftrag immer die Parameternummer selbst und den von der Parameternummer abhängigen Offset.

Auswahl Parameterbereich und zugehöriger Offset

Parameterbereich	Offset	Offsetwert
0 < Parameternummer < 10000	p8630[2] = 0	0
10000 ≤ Parameternummer < 20000	p8630[2] = 1	10000
20000 ≤ Parameternummer < 20000	p8630[2] = 2	20000
30000 ≤ Parameternummer < 20000	p8630[2] = 3	30000

6.2 SDO-Dienste

Objektnummer für einen SDO-Auftrag berechnen

Die Objektnummer für den SDO-Auftrag errechnet sich wie folgt: Objektnummer hex = (Nummer des Umrichterparameters - Offsetwert) hex + 2000 hex

Beispiele für Objektnummern

Parameter	Nummer des U	mrichterparameters - Offsetwert	Objektnummer
	Dezimal	Hexadezimal	
• p0010:	10 dez	A hex	\Rightarrow 200A hex
• p11000:	1000 dez	3E8 hex	⇒ 23E8 hex
• r20001:	1 dez	1 hex	⇒ 2001 hex
• p31020:	1020 dez	3FC hex	⇒ 23FC hex

Auswahl Indexbereich

Ein CANopen-Objekt kann maximal 255 Indizes enthalten. Für Parameter mit mehr als 255 Indizes müssen Sie über p8630[1] weitere CANopen-Objekte anlegen. Insgesamt sind 1024 Indizes möglich.

- p8630[1] = 0: 0 ... 255
- p8630[1] = 1: 256 ... 511
- p8630[1] = 2: 512 ... 767
- p8630[1] = 3: 768 ... 1023

Zugriff auf Objekte der Umrichterparameter einschalten

Den Zugriff auf Objekte der Umrichterparameter schalten Sie über p8630[0] ein, dabei gilt:

- p8630[0] = 0: nur Zugriff auf CANopen-Objekte
- p8630[0] = 1: Zugriff auf virtuelle CANopen-Objekte (Umrichterparameter)
- p8630[0] = 2: für G120-Umrichter ohne Bedeutung

Eine Auswahl wichtiger herstellerspezifischer Objekte ist in der EDS-Datei enthalten.

6.2.2 Über SDO auf PZD-Objekte zugreifen

Zugriff auf gemappte PZD-Objekte

Wenn Sie auf Objekte zugreifen, die über das Empfangs- oder Sendetelegramm gemappt sind, können Sie ohne weitere Einstellungen auf die Prozessdaten zugreifen.

Übersicht

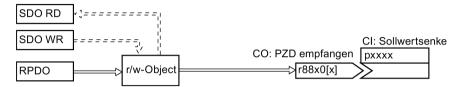


Bild 6-1 Zugriff auf gemappte PZD-Sollwert-Objekte

Bild 6-2 Zugriff auf gemappte PZD-Iswert-Objekte

Beispiel, Zugriff auf Objekt 6042 hex

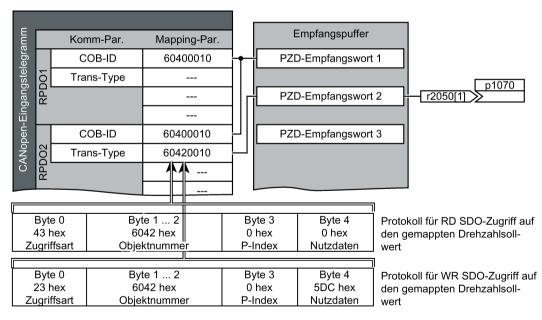


Bild 6-3 Zufriff auf die Prozessdaten

Zugriff auf nicht gemappte PZD-Objekte

Wenn Sie auf Objekte zugreifen, die nicht über das Empfangs- oder Sendetelgramm verschaltet sind, müssen Sie zusätzlich die Verschaltung mit den entsprechenden CANopen-Parametern herstellen.

Übersicht

Bild 6-4 Zugriff auf nicht gemappte PZD-Sollwert-Objekte

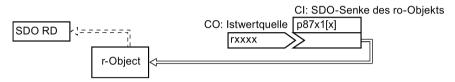


Bild 6-5 Zugriff auf nicht gemappte freie PZD-Iswert-Objekte

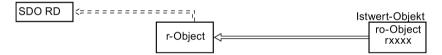


Bild 6-6 Zugriff auf nicht gemappte standardisierte PZD-Iswert-Objekte

Beispiel für die Verschaltung des Steuerworts mit den CANopen-Parametern:

p840[0] = r8795.0
p0844[0] = r8795.1
p0848[0] = r8795.2
p0852[0] = r8795.3
p1140[0] = r8795.4
p1141[0] = r8795.5
p1142[0] = r8795.6
p2103[0] = r8795.7
p8791 = r8795.8

6.3 **PDO-Dienste**

Prozessdatenobjekte (PDO)

CANopen überträgt die Prozessdaten über Prozessdatenobjekte "Process Data Objects" (PDO). Es gibt Sende-PDO (TDPO) und Empfangs-PDO (RPDO). CAN-Controller und Umrichter tauschen bis zu acht TPDO und RPDO aus.

PDO-Kommunikationsparameter und PDO-Mappingparameter legen ein PDO fest.

Verknüpfen Sie die PDO mit den Elementen des Objektverzeichnisses, welche die Prozessdaten enthalten.

Freies PDO-Mapping (Seite 184)

Predefined Connection Set (Seite 182).

Parameterbereich für PDO		RPDO		TPDO	
	Im Umrichter	In CANopen	Im Umrichter	In CANopen	
Kommunikationsparameter	p8700 p8707	1400 hex 1407 hex	p8720 p8727	1800 hex 1807 hex	
Mappingparameter	p8710 p8717	1600 hex 1607 hex	p8730 p8737	1A00 hex1A07 hex	

Aufbau der PDO

Ein PDO besteht aus den Kommunikations- und den Mappingparametern. Nachfolgend finden Sie Beispiele für den Aufbau der TPDO und RPDO.

Werte für die Kommunikationsparameter:

Tabellen in Abschnitt Objektverzeichnisse (Seite 194)

Aufbau der RPDO am Beispiel des RPDO1

	p8700[0] = COB-ID	p8700[1] = Trans-Type	p8710.0_xx_yy	p8710.1_xx_yy	p8710.2_xx_yy	p8710.3_xx_yy
L	Sub-Ind 01	Sub-Ind 02	Objekt 1	Objekt 2	Objekt 3	Objekt 4
ī	Kommunikati	onsparameter	l	Mapping-l	Parameter	

Aufbau der TPDO am Beispiel des TPDO1

p8720[0] = COB-ID	p8720[1] = Trans-Type	p8720[2] = Inhibit time	p8720[4] = Event timer	p8730.0_xx_yy	p8730.1_xx_yy	p8730.2_xx_yy	p8730.3_xx_yy
Sub-Ind 01	Sub-Ind 02	Sub-Ind 03	Sub-Ind 05	Objekt 1	Objekt 2	Objekt 3	Objekt 4
ī	Kommunikati	onsparameter		I	Mapping-	Parameter	

Aufbau des Mapping-Parameters am Beispiel des ersten gemappten Objekts

Bild 6-7 Aufbau der Kommunikationsobjekte RPDO und TPDO

6.3 PDO-Dienste

COB-ID

Übersicht: Kommunikation über CANopen (Seite 169).

Berechnung der COB-IDs: Predefined Connection Set (Seite 182)

Transmission Type (Übertragungsarten)

Für die Prozessdatenobjekte gibt es folgende Übertragungsarten, die Sie im Index 1 des Kommunikationsparameters (p8700[1] ... p8707[1] / p8720[1] ... p8727[1]) im Umrichter einstellen:

- Synchron zyklisch (Wertebereich: 1 ... 240)
 - TPDO nach jedem n-ten SYNC
 - RPDO nach jedem n-ten SYNC
- Synchron azyklisch (Wert: 0)
 - TPDO, wenn ein SYNC kommt und sich ein Prozessdatum im Telegramm geändert hat.
- Asynchron zyklisch (Werte: 254, 255 + event time)
 - TPDO, wenn sich ein Prozessdatum im Telegramm geändert hat.
- Asynchron azyklisch (Werte: 254, 255)
 - TPDO wird im Intervall der Event Time gesendet.
 - Steuerung übernimmt RPDO sofort.
- Synchrone Datenübertragung

Ein periodisches Synchronisationsobjekt (SYNC-Objekt) sorgt dafür, dass die Geräte am CANopen-Bus während der Übertragung synchronisiert bleiben.

Jedes als Synchronisationsobjekt übertragene PDO muss eine "Übertragungsart", 1 ... n, enthalten:

- Übertragungsart 1: PDO in jedem SYNC-Takt
- Übertragungsart n: PDO in jedem n-ten SYNC-Takt

Die folgende Abbildung zeigt das Prinzip der synchronen und asynchronen Übertragung:

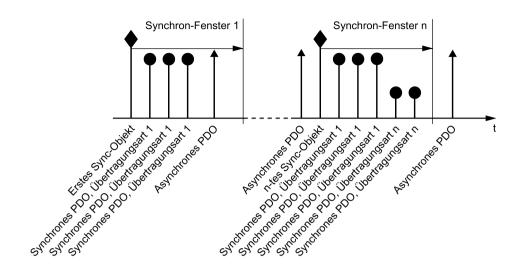


Bild 6-8 Prinzip der synchronen und asynchronen Übertragung

Für synchrone TPDO kennzeichnet die Übertragungsart auch die Übertragungsrate als Faktor der SYNC-Objekt-Übertragungsperiode.

Der CAN-Controller überträgt Daten von synchronen RPDO, die er nach einem SYNC-Signal empfangen hat, erst nach dem nächsten SYNC-Signal an den Umrichter.

Hinweis

Das SYNC-Signal synchronisiert nur die Kommunikation auf dem CANopen-Bus und nicht Funktionen im Umrichter, z. B. die Taktzeiten der Drehzahl-Regelung.

Inhibit time (Sperrzeit)

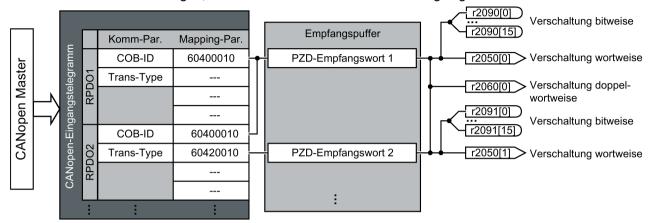
Mit der Inhibit time legen Sie die minimale Pause zwischen zwei Übertragungen fest.

PDO-Dienste

Nach CANopen gibt es folgende Dienste:

- Protocol PDO Write
- Protocol PDO Read

Die SINAMICS-Umrichter unterstützen Protocol PDO Write


Write-PDO

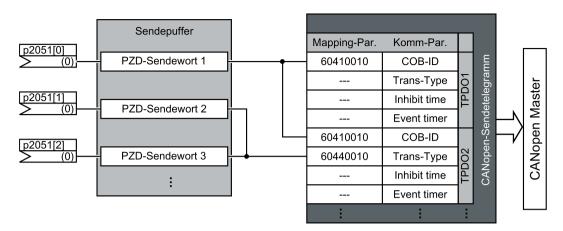
Der Dienst "Protocol PDO Write" folgt dem Push-Modell. Das PDO hat exakt einen Producer. Es gibt keinen, einen oder mehrere Consumer.

Über Write-PDO sendet der Producer des PDO die Daten des gemappten Applikationsobjektes an die einzelnen Consumer.

6.3.1 Predefined Connection Set

Wenn Sie den Umrichter mit der Werkseinstellung in CANopen einbinden, empfängt der Umrichter Steuerwort und Drehzahl-Sollwert von der Steuerung. Der Umrichter gibt das Zustandswort und den Drehzahl-Istwert an die Steuerung zurück. Das sind die Einstellungen, die im Predefined Connection Set festgelegt sind.

Aufbau des Kommunikations-Parameters am Beispiel des Steuerworts im Predefined Connection Set


RPDO1: Kommunikationsparameter

- p8700[0] = COB-ID
- p8700[1] = Transmission Type

Aufbau des Mapping-Parameters am Beispiel des Steuerworts im Predefined Connections Set

```
|6|0|4|0|0|0|1|0|
| Länge des Objekts (Stellen 7 ... 8 von p8710[0])
| Sub-Index (Stellen 5 ... 6 von p8710[0], bei G120 immer = 0)
| OV-Index (Stellen 1 ... 4 von p8710[0])
```

Bild 6-9 RPDO-Mapping mit dem Predefined Connection Set

Aufbau des Kommunikations-Parameters am Beispiel des Zustandsworts im Predefined Connection Set Aufbau des Mapping-Parameters am Beispiel des Steuerworts im Predefined Connections Set

TPDO1: Kommunikationsparameter
- p8720[0] = COB-ID
- p8700[1] = Transmission type
- p8700[2] = Inhibit time
- p8700[3] = Event timer

| 6|0|4|1|0|0|1|0|
| Länge des Objekts (Stellen 7 ... 8 von p8730[0])
| Sub-Index (Stellen 5 ... 6 von p8730[0], bei G120 immer = 0)
| OV-Index (Stellen 1 ... 4 von p8730[0])

Bild 6-10 TPDO-Mapping mit dem Predefined Connection Set

6.3.2 Freies PDO-Mapping

Über das Freie PDO-Mapping konfigurieren und verschalten Sie beliebige Prozessdaten wahlweise wie folgt:

- als Freie Objekte (Seite 203) oder
- als Objekte des Antriebsprofils CiA 402 entsprechend den Erfordernissen Ihrer Anlage für den PDO-Dienst

Voraussetzung ist, dass der Umrichter auf Freies PDO-Mapping eingestellt ist. (p8744 = 2) (Werkseinstellung).

Prozessdaten über Freies PDO-Mapping konfigurieren und mappen

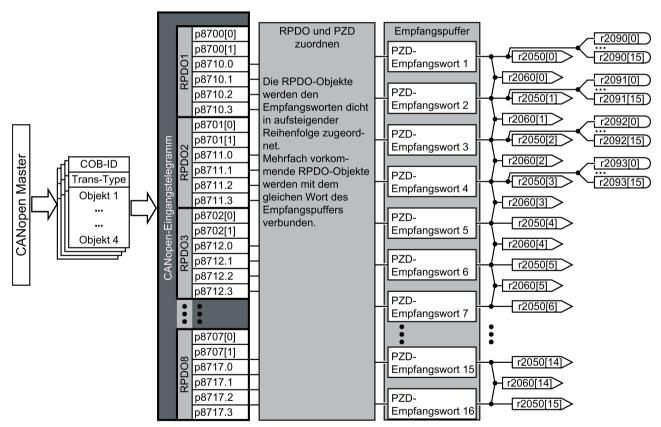
Vorgehensweise

- Legen Sie die Prozessdaten fest. Beispiele:
 - Stromistwert (r0068) vom Umrichter an die Steuerung senden (TPDO Transmit Prozess-Daten-Objekt)
 - Drehzahl-Zusatzsollwert von der Steuerung an den Umrichter senden (RPDO -Receive Prozess-Daten-Objekt) und in p1075 schreiben
- 2. Legen Sie die Objekte zur Übertragung der Prozessdaten fest.
 - TPDO1 für Stromistwert
 - RPDO1 für Drehzahl-Zusatzsollwert
- 3. Legen Sie die Kommunikationsparameter für RPDO und TPDO fest.
 - Kommunikationsparameter f
 ür RPDO festlegen.
 - RPDO-Kommunikationsparameter (Seite 196)
 - Kommunikationsparameter f
 ür TPDO festlegen.
 - Siehe TPDO-Kommunikationsparameter (Seite 199)
- 4. Wählen Sie den OV-Index für Mapping-Parameter.
 - Mappingparameter f
 ür RPDO.
 - RPDO-Mappingparameter (Seite 197)
 - Mappingparameter f
 ür TPDO.
 - TPDO-Mappingparameter (Seite 201)
- 5. Schreiben Sie den OV-Index in die SINAMICS Mapping-Parameter.
 - p8710 ... p8717 für RPDO
 - p8730 ... p8737 für TPDO

Hinweis

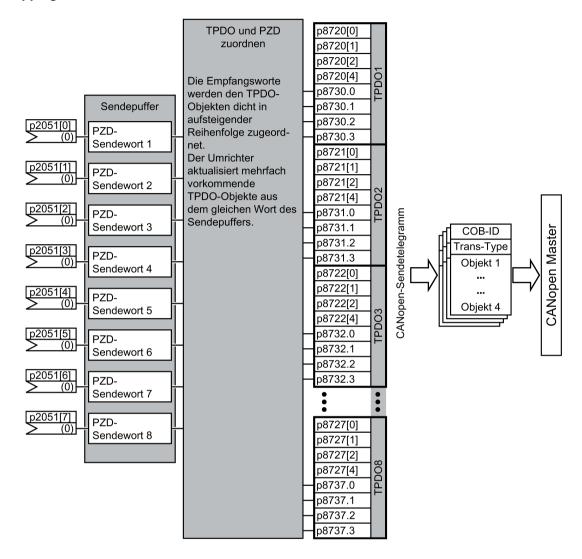
Voraussetzung zum Ändern der OV-Indizes der SINAMICS Mapping-Parameter

Damit Sie die Werte der Mapping-Parameter ändern können, müssen Sie die COB-ID des enstprechenden Parameters auf ungültig setzen. Addieren Sie dazu zur COB-ID den Wert 80000000 hex. Wenn Sie den Mapping-Parameter geändert haben, müssen Sie die COB-ID wieder auf den gültigen Wert zurücksetzen.


OV-Index:

Objekte des Antriebsprofils CiA 402 (Seite 204)

Damit haben Sie die Prozessdaten konfiguriert und gemappt. □


Freies RPDO-Mapping - Übersicht

Verschaltungsmöglichkeiten: ► Bitweise mit r2090 ... r2093

- ► Wortweise mit r2050[0 ... 15]
- ► Doppelwortweise mit r2060[0 ... 14]

Freies TPDO-Mapping - Übersicht

6.3.3 Objekte aus Empfangs- und Sendepuffer verschalten

Um die Prozessdaten zu verschalten, gehen Sie folgendermaßen vor:

Vorgehensweise

1. Telegramm-Erstellen:

PDO erstellen (Parametrieren der PDO Com. Parameter und PDO MappingParameter).

Predefined Connection Set (Seite 182)

Freies PDO-Mapping (Seite 184)

2. Verschalten der Parameter:

Verschalten der Parameter des PZD-Puffers (r2050/r2060, p2051/p2061) entsprechend dem Mapping dem Punkt "Telegramm erstellen) anhand der Mappingtabelle r8750/r8760 bzw. r8751/r8761. Die Mappingtabelle zeigt die Position eines gemappten CANopen-Objektes im PZD-Puffer an.

Damit haben Sie die Prozessdaten verschaltet.

Empfangspuffer verschalten

Der Umrichter schreibt die empfangenen Daten in den Empfangspuffer:

- PZD-Empfangswort 1 ... PZD-Empfangswort 12 doppelwortweise in r2060[0] ... r2060[10].
- PZD-Empfangswort 1 ... PZD-Empfangswort 12 wortweise in r2050[0] ... r2050[11]
- PZD 1 ... PZD 4 bitweise in r2090.0 ... r2090.15 bis r2093.0 ... r2093.15

Die Position der gemappten Objekte im Empfangspuffer werden angezeigt in:

- r8760 für die Doppelwortweise Verschaltung
- r8750 für wortweise Verschaltung

Beispiele

Objekt	Gemappte Empfangs- objekte	Empfangswort r2050	
Steuerwort	r8750[0] = 6040 hex (PZD1)	r2050[0] (PZD1) in Steuerwort verschalten 1)	p0840.0 = 2090.0 p0844.0 = 2090.1 p08484.0 = 2090. 2 p0852.0 = 2090.3 p2130.0 = 2090.7
Drehmomentgrenze	r8750[1] = 5800 hex (PZD2)	r2050[1] (PZD2) in Drehmoment- grenze verschalten	p1522 = 2050[1]
Drehzahl-Sollwert	r8750[2] = 6042 hex (PZD3)	r2050[2] (PZD3) in Drehzahl- Sollwert verschalten	p1070 = 2050[2]

¹⁾ siehe auch p8790, "CAN Steuerwort-Verschaltung automatisch"

6.3 PDO-Dienste

Sendepuffer verschalten

Der Umrichter sendet die Daten aus dem Sendepuffer wie folgt:

- p2051[0] ... p2051[13] in PZD 1 ... PZD 14 (Anzeige der aktuellen Werte in r2053[0 ... 13])
- p2061[0] ... p2061[12] in PZD 1 ... PZD 14 (Anzeige der aktuellen Werte in r2063[0 ... 12])

Beispiele

Objekt	Gemappte Sendeobjekte	Sendewort p2051	
Zustandswort	r8751[0] = 6041 hex (PZD1)	p2051[0] in PZD1 verschalten	p2051[0] = r8784
Stromistwert	r8751[1] = 5810 hex (PZD2)	PZD2 in Stromistwert verschalten	p2051[1] = r68[1
Drehzahl-Istwert	r8751[2] = 6044 hex (PZD3)	PZD3 in Drehzahl-Istwert verschalten	p2051[2] = r63[0

6.3.4 Freies PDO-Mapping am Beispiel von Stromistwert und Momentengrenze

Den Stromistwert und die Momentengrenze binden Sie über das Freie PDO-Mapping in die Kommunikation ein.

Der Stromistwert wird im TPDO1 und der Momentensollwert im RPDO1 übertragen. TPDO1 und RPDO1 sind bereits durch das Predefined Connection Set festgelegt.

Stromistwert (r0068) mit TPDO1 mappen

Um den Stromistwet als Sendeobjekt in die Kommunikation zu übernehmen, gehen Sie folgendermaßen vor:

Vorgehensweise

- Legen Sie den OV-Index für den Stromistwert fest: erster freier OV-Index aus den Sendedaten der Tabelle "Freie Objekte" 5810
- 2. Mappen Sie den OV-Index für den Stromistwert mit PZD2:
 - setzen Sie die COB-ID von TPDO1 auf "ungültig": p8720[0] = 800001B2 hex

 - setzen Sie die COB-ID von TPDO1 auf "gültig": p8720[0] = 400001B2 hex

r8751 zeigt, welches Objekt auf welches PZD gemapped ist: PZD2 (r8751[1]) = 5810 (Stromistwert)

3. verknüpfen Sie das PZD-Sendewort 2 im Sendewort (p2051) mit dem Stromistwert: p2051[1] = r0086[0]

Damit haben Sie den Stromistwert als Sendeobjekt in die Kommunikation übernommen. \Box

Momentengrenze (p1520) mit RPDO1 mappen

Um den Wert für die Momentengrenze in die Kommunikation zu übernehmen, gehen sie folgendermaßen vor:

Vorgehensweise

- Legen Sie den OV-Index für die Momentengrenze fest: erster freier OV-Index aus den Empfangsdaten der Tabelle "Freie Objekte" 5800
- 2. Mappen Sie den OV-Index für die Momentengrenze mit PZD2
 - setzen Sie die COB-ID von RPDO1 auf ungültig: p8700[0] = 80000232 hex
 - Verknüpfen Sie den Mapping-Parameter Objekt 2 von RPDO1 (p8710.1) mit dem OV-Index für die Momentengrenze:
 p8710.1 = 58000010 hex (5800 = OV-Index, 00 = fester Wert)

6.3 PDO-Dienste

 setzen Sie die COB-ID von RPDO1 auf gültig: p8700[0] = 40000232 hex

r8750 zeigt, welches Objekt auf welches PZD gemapped ist: PZD2 (r8750[1]) = 5800 (Momentengrenze)

 verknüpfen Sie das PZD-Empfangswort 2 im Empfangswort (p2050) mit der Momentengrenze: p2050[1] = p1520[0]

Damit haben Sie den Wert für die Momentengrenze in die Kommunikation übernommen. \Box

6.4 CANopen-Betriebsarten

Der Umrichter verfügt über folgende CANopen-Betriebsarten

CANopen Betriebsart			SINAMICS				
Wirksame Betriebsart	Einstel- len in	6502 h: Anzeige	Steuerungs-/Regelungsart	Contr	ol Unit hter	I	Wert in p1300
	6060 h: Wert	aktive Betriebs- art in		CU230P-2 CAN	G120C CAN	CU250S-2 CAN	
Velocity Mode	2	Bit1	U/f-Steuerung mit linearer Charakteristik	х	х	Х	0
Manufacturer- specific Operation Mode 1	-1	Bit16	U/f-Steuerung mit linearer Charakteristik und FCC	x	×	X	1
Manufacturer- specific Operation Mode 2	-2	Bit17	U/f-Steuerung mit paraboli- scher Charakteristik	x	×	Х	2
Manufacturer- specific Operation Mode 3	-3	Bit18	U/f-Steuerung mit paramet- rierbarer Charakteristik		X	X	3
Manufacturer- specific Operation Mode 4	-4	Bit19	U/f-Steuerung mit linearer Charakteristik und ECO	х	x	X	4
Manufacturer- specific Operation Mode 5	-5	Bit20	U/f-Steuerung für frequenz- genauen Antrieb (Textilbe- reich)		X	x	5
Manufacturer- specific Operation Mode 6	-6	Bit21	U/f-Steuerung für frequenz- genauen Antrieb und FCC		X	x	6
Manufacturer- specific Operation Mode 7	-7	Bit22	U/f-Steuerung mit paraboli- scher Charakteristik und ECO	х	х	x	7
Manufacturer- specific Operation Mode 8	-15	Bit23	Betrieb mit Bremswiderstand			X	15
Manufacturer- specific Operation Mode 10	-19	Bit25	U/f-Steuerung mit unabhän- gigem Spannungssollwert		x	X	19
Manufacturer- specific Operation Mode 11	-20	Bit26	Drehzahlregelung (geberlos)	x	×	Х	20
Profile Velocity Mode	3	Bit2	Drehzahlregelung (mit Geber)			Х	21
Manufacturer- specific Operation Mode 12	-22	Bit27	Drehmomentregelung (geberlos)			х	22
Profile Torque Mode	4	Bit3	Drehmomentregelung (mit Geber)			Х	23

Umschalten der CANopen-Betriebsarten

		Umschalten von				
	Velocity Mode	Profile Velocity Mode	Profile Torque Mode			
Velocity Mode		p1300 < 20 U/f-Steuerung	p1300 < 20 U/f-Steuerung			
ਸੂ Profile Velocity Mode	p1300 = 20 / 21 Drehzahlregelung		p1500 = 0 (über BiCo), Drehzahlregelung			
Profile Torque Mode	p1300 = 22 / 23 Drehzahlregelung	p1500 = 1 (über BiCo), Drehmomentregelung				

Parameterzugriff über SDO Parameteränderung über PDO

Unabhängig von der aktuell wirksamen CANopen-Betriebsart, können Sie auch Parameter aus anderen CANopen-Betriebsarten nutzen.

6.5 RAM nach ROM über das CANopen Objekt 1010

Über das CANopen-Objekt 1010 speichern Sie die Parameter im EEPROM des Umrichters. Sie haben folgende Möglichkeiten:

- 1010.1: alle Parameter speichern identisch mit p0971 = 1, bzw. netzausfallsicher speichern.
- 1010.2: Kommunikationsparameter speichern über Parametereinstellungen nicht möglich!
- 1010.3: Applikationsparameter speichern über Parametereinstellungen nicht möglich!

Wenn eine Speicherkarte gesteckt ist, schreiben Sie die Parametereinstellungen über die Steuerung mit dem Objekt 1010.1 ins EEPROM und auf die Speicherkarte. Mit der Speicherkarte können Sie eine Serieninbetriebnahme durchführen.

Weitere Informationen finden Sie in der Betriebsanleitung, im Kapitel "Daten sichern und Serieninbetriebnahme"

Übersicht der Handbücher (Seite 232),

Hinweis

Daten speichern mit den Objekten 1010.2 und 1010.3

Mit den Objekten 1010.2 und 1010.3 können Sie die Kommunikations- bzw. Applikationsparameter zwar ins EEPROM, aber nicht auf die Speicherkarte schreiben. Das heißt auch, es nicht möglich auf diesem Weg über die Speicherkarte, nur die Kommunikationsdaten oder nur die Applikationsdaten von einem Umrichter in den anderen zu laden.

Hinweis

Daten bei gestecktem USB-Kabel über die Steuerung im Umrichter speichern

Wenn der Umrichter über USB mit einem Rechner verbunden, aber Startdrive nicht online auf den Umrichter zugreift, können Sie die Daten nicht über das CANopen-Objekt 1010 im Umrichter speichern.

Ziehen Sie das USB-Kabel vom Umrichter ab, wenn Sie die Parametereinstellungen mit dem Objekt 1010.1 über die Steuerung im Umrichter speichern wollen.

6.6 Objektverzeichnisse

6.6.1 Allgemeine Objekte des Kommunikationsprofils CiA 301

Übersicht

Die folgende Tabelle listet die antriebsunabhängigen Kommunikationsobjekte auf. In der Spalte "SINAMICS-Parameter" stehen die Parameternummern, denen sie im Umrichter zugeordnet sind.

Tabelle 6-2 Antriebsunabhängige Kommunikationsobjekte

OV- Index (hex)	Sub- Index (hex)	Name des Objektes	SINAMICS- Parameter	Über- tragung	Daten- typ	Vorein- gestellte Werte	schreib-/ lesbar
1000		Device type	r8600	SDO	U32	_	r
1001		Error register	r8601	SDO	U8	_	r
1003	052 hex	Predefined error field	p8611[082]	SDO	U32	0	r/w
	0	Number of errors	p8611.0	SDO	U32	0	rw
	1	Number of module	p8611.1	SDO	U32	0	r
	2	Anzahl der Fehler Modul 1	p8611.2	SDO	U32	0	r
	3-A	Standard error field 1. Module	p8611.3-p8611.10	SDO	U32	0	r
	В	Anzahl der Fehler Modul 2	p8611.11	SDO	U32	0	r
	C-13	Standard error field 2. Module	p8611.12-p8611.19	SDO	U32	0	r
	14	Anzahl der Fehler Modul 3	p8611.20	SDO	U32	0	r
	15-1C	Standard error field 3. Module	p8611.21-p8611.28	SDO	U32	0	r
	1D	Anzahl der Fehler Modul 4	p8611.29	SDO	U32	0	r
	1E-25	Standard error field 4. Module	p8611.30-p8611.37	SDO	U32	0	r
	26	Anzahl der Fehler Modul 5	p8611.38	SDO	U32	0	r
	27-2E	Standard error field 5. Module	p8611.39-p8611.46	SDO	U32	0	r
	2F	Anzahl der Fehler Modul 6	p8611.47	SDO	U32	0	r
	30-37	Standard error field 6. Module	p8611.48-p8611.55	SDO	U32	0	r
	38	Anzahl der Fehler Modul 7	p8611.56	SDO	U32	0	r
	39-40	Standard error field 7. Module	p8611.57-p8611.64	SDO	U32	0	r
	41	Anzahl der Fehler Modul 8	p8611.65	SDO	U32	0	r
	42-49	Standard error field 8. Module	p8611.66-p8611.73	SDO	U32	0	r
	4A	Anzahl Fehler Control Unit	p8611.74	SDO	U32	0	r
	4B-52	Standard Error Field Control Unit	p8611.75-p8611.82	SDO	U32	0	r
1005		COB ID SYNC	p8602	SDO	U32	128	rw
1008		Manufacturer device name		SDO			
100A		Manufacturer software version	r0018	SDO	U32	_	r
100C		Guard Time	p8604.0	SDO	U16	0	rw

OV- Index (hex)	Sub- Index (hex)	Name des Objektes	SINAMICS- Parameter	Über- tragung	Daten- typ	Vorein- gestellte Werte	schreib-/ lesbar
100D		Life time factor	p8604.1	SDO	U16	0	rw
1010		Store parameters	p0971	SDO	U16	0	rw
	0	Largest subindex supported		SDO			
	1	Save all parameters	p0971	SDO	U16	0	rw
	2	Save communication parameters (0x1000-0x1fff)	p0971	SDO	U16	0	rw
	3	Save application related parameters (0x6000-0x9fff)	p0971	SDO	U16	0	rw
1011		Restore default parameters	p0970	SDO	U16	0	rw
	0	Largest subindex supported		SDO			
	1	Restore all default parameters	p0970	SDO	U16	0	rw
	2	Restore communication default parameters (0x1000-0x1fff)	p0970	SDO	U16	0	rw
	3	Restore application default parameters (0x6000-0x9fff)	p0970	SDO	U16	0	rw
1014		COB ID Emergency	p8603	SDO	U32	0	rw
1017		Producer Heartbeat Time	p8606	SDO	U16	0	rw
1018		Identy Object	r8607[03]		U32	_	r
	0	Number of entries		SDO			
	1	Vendor ID	r8607.0	SDO	U32	_	r
	2	Product code	r8607.1	SDO	U32	_	r
	3	Revision number	r8607.2	SDO	U32	_	r
	4	Serial number	r8607.3	SDO	U32	0	r
1027		Module List					
	0	Number of entries	r0102	SDO	U16	_	r
	1-8	Module ID	p0107[015]	SDO	I16	0	rw
1029		Error behaviour					
	0	No of error classes		SDO			
	1	Communication Error	p8609.0	SDO	U32	1	rw
	2	Device profile or manufacturer specific error	p8609.1	SDO	U32	1	rw
1200		1st server SDO parameter					
	0	Number of entries		SDO			
	1	COB-ID Client -> Server (rx)	r8610.0	SDO	U32	_	r
	2	COB-ID Server -> Client (tx)	r8610.1	SDO	U32	_	r

RPDO-Konfigurationsobjekte

Die folgenden Tabellen listen die Kommunikations- und Mappingparameter zusammen mit den Indizes für die einzelnen RPDO-Konfigurationsobjekte auf. Die Konfigurationsobjekte werden über SDO hergestellt. In der Spalte "SINAMICS-Parameter" stehen die Parameternummern, denen sie im Umrichter zugeordnet sind.

Tabelle 6-3 RPDO-Konfigurationsobjekte - Kommunikationsparameter

OV- Index (hex)	Sub- index (hex)	Name des Objekts	SINAMICS- Parameter	Daten- typ	Predefined Connection Set	schreib-/ lesbar
1400		Receive PDO 1 Communication Parameter				
	0	Largest subindex supported		U8	2	r
	1	COB ID used by PDO	p8700.0	U32	200 hex + Node-ID	r/w
	2	Transmission type	p8700.1	U8	FE hex	r/w
1401		Receive PDO 2 Communication Parameter				
	0	Largest subindex supported		U8	2	r
	1	COB ID used by PDO	p8701.0	U32	300 hex + Node-ID	r/w
	2	Transmission type	p8701.1	U8	FE hex	r/w
1402		Receive PDO 3 Communication Parameter				
	0	Largest subindex supported		U8	2	r
	1	COB ID used by PDO	p8702.0	U32	8000 06DF hex	r/w
	2	Transmission type	p8702.1	U8	FE hex	r/w
1403		Receive PDO 4 Communication Parameter				
	0	Largest subindex supported		U8	2	r
	1	COB ID used by PDO	p8703.0	U32	8000 06DF hex	r/w
	2	Transmission type	p8703.1	U8	FE hex	r/w
1404		Receive PDO 5 Communication Parameter				
	0	Largest subindex supported		U8	2	r
	1	COB ID used by PDO	p8704.0	U32	8000 06DF hex	r/w
	2	Transmission type	p8704.1	U8	FE hex	r/w
1405		Receive PDO 6 Communication Parameter				
	0	Largest subindex supported		U8	2	r
	1	COB ID used by PDO	p8705.0	U32	8000 06DF hex	r/w
	2	Transmission type	p8705.1	U8	FE hex	r/w
1406		Receive PDO 7 Communication Parameter				
	0	Largest subindex supported		U8	2	r
	1	COB ID used by PDO	p8706.0	U32	8000 06DF hex	r/w
	2	Transmission type	p8706.1	U8	FE hex	r/w
1407		Receive PDO 8 Communication Parameter	·			
	0	Largest subindex supported		U8	2	r
	1	COB ID used by PDO	p8707.0	U32	8000 06DF hex	r/w
	2	Transmission type	p8707.1	U8	FE hex	r/w

Tabelle 6-4 RPDO-Konfigurationsobjekte - Mappingparameter

OV- Index (hex)	Sub- index (hex)	Name des Objekts	SINAMICS- Parameter	Daten- typ	Predefined Connection Set	schreib-/ lesbar
1600		Receive PDO 1 mapping Parameter				
	0	Number of mapped application Objects in PDO		U8	1	r
	1	PDO mapping for the first application object to be mapped	p8710.0	U32	6040 hex	r/w
	2	PDO mapping for the second application object to be mapped	p8710.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8710.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8710.3	U32	0	r/w
1601		Receive PDO 2 mapping Parameter				
	0	Number of mapped application Objects in PDO		U8	2	r
	1	PDO mapping for the first application object to be mapped	p8711.0	U32	6040 hex	r/w
	2	PDO mapping for the second application object to be mapped	p8711.1	U32	6042 hex	r/w
	3	PDO mapping for the third application object to be mapped	p8711.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8711.3	U32	0	r/w
1602		Receive PDO 3 mapping Parameter				
	0	Number of mapped application Objects in PDO		U8	0	r
	1	PDO mapping for the first application object to be mapped	p8712.0	U32	0	r/w
	2	PDO mapping for the second application object to be mapped	p8712.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8712.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8712.3	U32	0	r/w
1603		Receive PDO 4 mapping Parameter				
	0	Number of mapped application Objects in PDO		U8	0	r
	1	PDO mapping for the first application object to be mapped	p8713.0	U32	0	r/w
	2	PDO mapping for the second application object to be mapped	p8713.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8713.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8713.3	U32	0	r/w

6.6 Objektverzeichnisse

OV- Index (hex)	Sub- index (hex)	Name des Objekts	SINAMICS- Parameter	Daten- typ	Predefined Connection Set	schreib-/ lesbar
1604		Receive PDO 5 mapping Parameter				
	0	Number of mapped application Objects in PDO		U8	0	r
	1	PDO mapping for the first application object to be mapped	p8714.0	U32	0	r/w
	2	PDO mapping for the second application object to be mapped	p8714.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8714.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8714.3	U32	0	r/w
1605		Receive PDO 6 mapping Parameter				
	0	Number of mapped application Objects in PDO		U8	0	r
	1	PDO mapping for the first application object to be mapped	p8715.0	U32	0	r/w
	2	PDO mapping for the second application object to be mapped	p8715.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8715.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8715.3	U32	0	r/w
1606		Receive PDO 7 mapping Parameter				
	0	Number of mapped application Objects in PDO		U8	0	r
	1	PDO mapping for the first application object to be mapped	p8716.0	U32	0	r/w
	2	PDO mapping for the second application object to be mapped	p8716.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8716.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8716.3	U32	0	r/w
1607		Receive PDO 8 mapping Parameter				
	0	Number of mapped application Objects in PDO		U8	0	r
	1	PDO mapping for the first application object to be mapped	p8717.0	U32	0	r/w
	2	PDO mapping for the second application object to be mapped	p8717.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8717.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8717.3	U32	0	r/w

TPDO-Konfigurationsobjekte

Die folgenden Tabellen listen die Kommunikations- und Mappingparameter zusammen mit den Indizes für die einzelnen TPDO-Konfigurationsobjekte auf. Die Konfigurationsobjekte werden über SDO hergestellt. In der Spalte "SINAMICS-Parameter" stehen die Parameternummern, denen sie im Umrichter zugeordnet sind.

Tabelle 6-5 TPDO-Konfigurationsobjekte - Kommunikationsparameter

OV- Index (hex)	Sub- Index (hex)	Name des Objektes	SINAMICS- Parameter	Daten- typ	Predefined Connection Set	schreib-/ lesbar			
1800		Transmit PDO 1 Communication Parameter							
	0	Largest subindex supported		U8	5	r			
	1	COB ID used by PDO	p8720.0	U32	180 hex + Node- ID	r/w			
	2	Transmission type	p8720.1	U8	FE hex	r/w			
	3	Inhibit time	p8720.2	U16	0	r/w			
	4	Reserved	p8720.3	U8		r/w			
	5	Event timer	p8720.4	U16	0	r/w			
1801		Transmit PDO 2 Communication Parameter							
	0	Largest subindex supported		U8	5	r			
	1	COB ID used by PDO	p8721.0	U32	280 hex + Node- ID	r/w			
	2	Transmission type	p8721.1	U8	FE hex	r/w			
	3	Inhibit time	p8721.2	U16	0	r/w			
	4	Reserved	p8721.3	U8		r/w			
	5	Event timer	p8721.4	U16	0	r/w			
1802		Transmit PDO 3 Communication Parameter							
	0	Largest subindex supported		U8	5	r			
	1	COB ID used by PDO	p8722.0	U32	C000 06DF hex	r/w			
	2	Transmission type	p8722.1	U8	FE hex	r/w			
	3	Inhibit time	p8722.2	U16	0	r/w			
	4	Reserved	p8722.3	U8		r/w			
	5	Event timer	p8722.4	U16	0	r/w			
1803		Transmit PDO 4 Communication Parameter							
	0	Largest subindex supported		U8	5	r			
	1	COB ID used by PDO	p8723.0	U32	C000 06DF hex	r/w			
	2	Transmission type	p8723.1	U8	FE hex	r/w			
	3	Inhibit time	p8723.2	U16	0	r/w			
	4	Reserved	p8723.3	U8		r/w			
	5	Event timer	p8723.4	U16	0	r/w			

6.6 Objektverzeichnisse

OV- Index (hex)	Sub- Index (hex)	Name des Objektes	SINAMICS- Parameter	Daten- typ	Predefined Connection Set	schreib-/ lesbar		
1804		Transmit PDO 5 Communication Parameter						
	0	Largest subindex supported		U8	5	r		
	1	COB ID used by PDO	p8724.0	U32	C000 06DF hex	r/w		
	2	Transmission type	p8724.1	U8	FE hex	r/w		
	3	Inhibit time	p8724.2	U16	0	r/w		
	4	Reserved	p8724.3	U8		r/w		
	5	Event timer	p8724.4	U16	0	r/w		
1805		Transmit PDO 6 Communication Parameter						
	0	Largest subindex supported		U8	5	r		
	1	COB ID used by PDO	p8725.0	U32	C000 06DF hex	r/w		
	2	Transmission type	p8725.1	U8	FE hex	r/w		
	3	Inhibit time	p8725.2	U16	0	r/w		
	4	Reserved	p8725.3	U8		r/w		
	5	Event timer	p8725.4	U16	0	r/w		
1806		Transmit PDO 7 Communication Parameter						
	0	Largest subindex supported		U8	5	r		
	1	COB ID used by PDO	p8726.0	U32	C000 06DF hex	r/w		
	2	Transmission type	p8726.1	U8	FE hex	r/w		
	3	Inhibit time	p8726.2	U16	0	r/w		
	4	Reserved	p8726.3	U8		r/w		
	5	Event timer	p8726.4	U16	0	r/w		
1807		Transmit PDO 8 Communication Parameter	•					
	0	Largest subindex supported		U8	5	r		
	1	COB ID used by PDO	p8727.0	U32	C000 06DF hex	r/w		
	2	Transmission type	p8727.1	U8	FE hex	r/w		
	3	Inhibit time	p8727.2	U16	0	r/w		
	4	Reserved	p8727.3	U8		r/w		
	5	Event timer	p8727.4	U16	0	r/w		

Tabelle 6- 6 TPDO-Konfigurationsobjekte - Mappingparameter

OV- Index (hex)	Sub- Index (hex)	Name des Objektes	SINAMICS Parameter	Datentyp	Predefined Connection Set	schreib-/ lesbar			
1A00		Transmit PDO 1 mapping Parameter							
	0	Number of mapped application Objects in PDO		U8	1	r/w			
	1	PDO mapping for the first application object to be mapped	p8730.0	U32	6041 hex	r/w			
	2	PDO mapping for the second application object to be mapped	p8730.1	U32	0	r/w			
	3	PDO mapping for the third application object to be mapped	p8730.2	U32	0	r/w			
	4	PDO mapping for the fourth application object to be mapped	p8730.3	U32	0	r/w			
1A01		Transmit PDO 2 mapping Parameter							
	0	Number of mapped application Objects in PDO		U8	2	r/w			
	1	PDO mapping for the first application object to be mapped	p8731.0	U32	6041 hex	r/w			
	2	PDO mapping for the second application object to be mapped	p8731.1	U32	6044 hex	r/w			
	3	PDO mapping for the third application object to be mapped	p8731.2	U32	0	r/w			
	4	PDO mapping for the fourth application object to be mapped	p8731.3	U32	0	r/w			
1A02		Transmit PDO 3 mapping Parameter							
	0	Number of mapped application Objects in PDO		U8	0	r/w			
	1	PDO mapping for the first application object to be mapped	p8732.0	U32	0	r/w			
	2	PDO mapping for the second application object to be mapped	p8732.1	U32	0	r/w			
	3	PDO mapping for the third application object to be mapped	p8732.2	U32	0	r/w			
	4	PDO mapping for the fourth application object to be mapped	p8732.3	U32	0	r/w			
1A03		Transmit PDO 4 mapping Parameter							
	0	Number of mapped application Objects in PDO		U8	0	r/w			
	1	PDO mapping for the first application object to be mapped	p8733.0	U32	0	r/w			
	2	PDO mapping for the second application object to be mapped	p8733.1	U32	0	r/w			
	3	PDO mapping for the third application object to be mapped	p8733.2	U32	0	r/w			
	4	PDO mapping for the fourth application object to be mapped	p8733.3	U32	0	r/w			

6.6 Objektverzeichnisse

OV- Index (hex)	Sub- Index (hex)	Name des Objektes	SINAMICS Parameter	Datentyp	Predefined Connection Set	schreib-/ lesbar
1A04		Transmit PDO 5 mapping Parameter	•	•		•
	0	Number of mapped application Objects in PDO		U8	0	r
	1	PDO mapping for the first application object to be mapped p8734		U32	0	r/w
	2	PDO mapping for the second application object to be mapped	p8734.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8734.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8734.3	U32	0	r/w
1A05		Transmit PDO 6 mapping Parameter				
	0	Number of mapped application Objects in PDO		U8	0	r/w
	1	PDO mapping for the first application object to be mapped	p8735.0	U32	0	r/w
	2	PDO mapping for the second application object to be mapped	p8735.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8735.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8735.3	U32	0	r/w
1A06		Transmit PDO 7 mapping Parameter				
	0	Number of mapped application Objects in PDO		U8	0	r
	1	PDO mapping for the first application object to be mapped	p8736.0	U32	0	r/w
	2	PDO mapping for the second application object to be mapped	p8736.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8736.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8736.3	U32	0	r/w
1A07		Transmit PDO 8 mapping Parameter				
	0	Number of mapped application Objects in PDO		U8	0	r
	1	PDO mapping for the first application object to be mapped	p8737.0	U32	0	r/w
	2	PDO mapping for the second application object to be mapped	p8737.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8737.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8737.3	U32	0	r/w

6.6.2 Freie Objekte

Über Empfangs- und Sende-Doppelwörter können Sie beliebige Prozessdatenobjekte des Empfangs- und Sendepuffers verschalten.

- Normierung bei Prozentwerten:
 - 16 Bit (Wort): 4000 hex ≙100 %
 - 32 Bit (Doppelwort) 4000000 hex ≙100 %
- Normierung bei einheitsbezogenen Werten:

Beispiel:

In der Spalte "SINAMICS-Parameter" stehen die Parameternummern, denen sie im Umrichter zugeordnet sind. Die Zuordnung gilt für den Fall, dass über SDO auf ein Objekt zugegriffen werden soll, das in kein PDO gemappt ist.

OV-Index (hex)	Beschreibung	Datentyp pro PZD	Voreinstel- lung	schreib-/ Lesbar	SINAMICS- Parameter
5800 580F	16 frei verschaltbare Empfangs-Prozessdaten	I16	0	r/w	r8745[0 15]
5810 581F	581F 16 frei verschaltbare Sende-Prozessdaten		0	r	r8746[0 15]
5820 5827	8 frei verschaltbare Empfangs-Prozessdaten		0	r/w	r8747[0 7]
5828 582F	reserviert				
5830 5837	8 frei verschaltbare Sende-Prozessdaten	132	0	r	r8748[0 7]
5828 582F	reserviert				

6.6.3 Objekte des Antriebsprofils CiA 402

Folgende Tabelle listet das Objektverzeichnis mit dem Index der einzelnen Objekte für die Antriebe auf. In der Spalte "SINAMICS-Parameter" stehen die Parameternummern, denen sie im Umrichter zugeordnet sind.

OV- Index (hex)	Sub- index (hex)	Name des Objekts	SINAMICS- Parameter	Über-tragung	Daten- typ	Vorein- stellung	schreib-/ lesbar
Predefinit	ions						
67FF		Single Device Type		SDO	U32		r
Common	Entries	in the Object dictionary					
6007		Abort connection option code	p8641	SDO	I16	3	r/w
6502		Supported drive modes		SDO	132		r
6504		Drive manufacturer		SDO	String	SIEMEN S	r
Device Co	ontrol						
6040		controlword	r8795	PDO/SDO	U16	_	r/w
6041		statusword	r8784	PDO/SDO	U16	-	r
605D		Halt option code	p8791	PDO/SDO	I16	_	r/w
6060		Modes of operation	p1300	SDO	18	_	r/w
6061		Modes of operation display	r8762	SDO	18	_	r
Factor Gr	oup						
6094		velocity encoder factor		SDO	U8	-	r
	01	velocity encoder factor numerator	p8798[1]	SDO	U32	1	r/w
	02	velocity encoder factor denumerator	p8798[2]	SDO	U32	1	r/w
Profile Ve	locity M	ode					
6063		Lageistwert	r0482	SDO/PDO	132	_	r
6069		Velocity sensor actual value	r0061	SDO/PDO	132	_	r
606B		Velocity demand value	r1170	SDO/PDO	132	_	r
606C		Velocity actual value Ist-Geschwindigkeit	r0063	SDO/PDO	132	_	r
6083		profile acceleration	p1082/p1120	SDO	132	_	r/w
6084		profile deceleration	p1082/p1121	SDO	132	0	r/w
6085		quick Stop deceleration	p1082/p1135	SDO	132	0	r/w
6086		motion profile type	p1115/p1134	SDO	132	0	r/w
60FF		Target velocity Soll-Geschwindigkeit	p1155[0] ¹⁾ p1072 ²⁾	SDO/PDO	132	0	r/w

OV- Index (hex)	Sub- index (hex)	Name des Objekts	SINAMICS- Parameter	Über-tragung	Daten- typ	Vorein- stellung	schreib-/ lesbar
Profile To	rque Mo	ode ³⁾					
6071		Target torque Drehmoment-Sollwert	r8797	SDO/ PDO	I16	_	r/w
6072		max torque	p1520	SDO	0	0	
Torque demand value r0079 SDO/ PDO I16 – Gesamt-Drehmoment-Sollwert		_	r				
6077		Torque actual value	r0080	SDO/ PDO	I16	_	r
Velocity N	/lode						
6042		vl target velocity	r8792	SDO/ PDO	I16	_	r/w
6043		vl velocity demand	r1170	SDO/ PDO	I16	-	r
6044		vl velocity actual value	r0063	SDO/ PDO	I16	_	r
6046	0	vl velocity min max amount		SDO	U8	_	r
	1	vl velocity min amount	p1080	SDO	U32	_	r/w
	2	vl velocity max amount	p1082	SDO	U32	_	r/w
6048	0	vl velocity acceleration		SDO	U8	_	r
	1	Delta speed	p1082	SDO	U32	_	r/w
	2	Delta time	p1120	SDO	U16	_	r/w

¹⁾ ohne Hochlaufgeber

²⁾ mit Hochlaufgeber

³⁾ Der Umrichter kann die Objekte des Profile Torque Modes verarbeiten. Sie können aber im Umrichter weder eingestellt noch angewählt werden.

6.7 Umrichter in CANopen integrieren

Inbetriebehmen

Voraussetzung

- Auf dem Rechner, mit dem Sie die Inbetriebnahme durchführen, ist Startdrive installiert.
- Der Umrichter ist mit einem CANopen-Master verbunden.
- Das EDS (Electronic Data Sheet) ist auf Ihrem CANopen-Master installiert.
- Sie haben die Schnittstellen des Umrichters in der Grundinbetriebnahme auf den Feldbus CANopen eingestellt.

Damit sind folgende Signale im Umrichter entsprechend dem Predefined Connection Sets verschaltet:

- Drehzahl-Sollwert und Steuerwort
- Drehzahl-Istwert und Zustandswort

Sie finden das EDS im Internet unter:

EDS (electronic data sheet) (http://support.automation.siemens.com/WW/view/de/48351511)

Vorgehensweise

- 1. Umrichter am CAN-Bus anschließen (Seite 207)
- 2. Stellen Sie Node-ID, Baudrate und die Überwachung der Kommunikation ein.
 - Node-ID und Baudrate einstellen (Seite 207)"
 - Überwachung der Kommunikation einstellen (Seite 208)"
- Weitere Prozessdaten verschalten
 Setzen Sie p8744 = 2. Jetzt können Sie weitere Prozessdaten verschalten.
 - Freies PDO-Mapping (Seite 184)"
- 4. Signal-Verschaltung der im freien PDO-Mapping erstellten Verknüpfungen.
 - Objekte aus Empfangs- und Sendepuffer verschalten (Seite 187).
- 5. Beenden der Inbetriebnahme Durchlaufen Sie in Startdrive in den Inbetriebnahme-Assistenten

Damit haben Sie die CANopen-Schnittstelle in Betrieb genommen.

Weitergehende Informationen zum Konfigurieren der Kommunikation:

Kommunikation über CANopen (Seite 169)

Objektverzeichnisse (Seite 194).

6.7.1 Umrichter am CAN-Bus anschließen

Verbinden Sie den Umrichter über die neunpolige SUB-D-Stiftleiste mit dem Feldbus.

Die Anschlüsse der Stiftleiste sind kurzschlussfest und potenzialfrei. Wenn der Umrichter den ersten oder letzten Slave im CANopen-Netz bildet, müssen Sie den Busabschluss-Widerstand zuschalten.

Weitere Informationen finden Sie in der Betriebsanleitung der Control Unit.

6.7.2 Node-ID und Baudrate einstellen

Node-ID

Gültiger Wertebreich: 1 ... 127

Sie haben folgende Möglichkeiten zum Einstellen der Node-ID:

• Mit dem Adress-Schalter auf der Control Unit

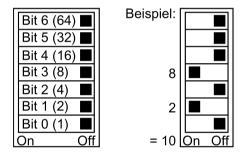


Bild 6-11 Adress-Schalter mit Beispiel für die Busadresse 10

Der Adress-Schalter hat Vorrang vor den anderen Einstellungen.

 Mit Startdrive oder einem Operator Panel über Parameter p8620 (Werkseinstellung: p8620 = 126)

p8620 ist nur änderbar, wenn im Adress-Schalter die Adresse 0 eingestellt ist.

Sichern Sie die Einstellungen netzausfallsicher, wenn Sie mit Startdrive arbeiten.

Die Position des Adress-Schalters finden Sie in der Betriebsanleitung des Umrichters.

Handbücher und technischer Support (Seite 232)

Baudrate einstellen

Die Baudrate stellen Sie über den Parameter p8622 ein. Sichern Sie die Einstellungen netzausfallsicher, wenn Sie mit Startdrive arbeiten.

Einstellbereich: 10 kbit/s ... 1 Mbit/s. Die maximal zulässige Leitungslänge bei 1 Mbit/s beträgt 40 m.

Node-ID oder Baudrate aktivieren

Vorgehensweise

Um die geänderte Node-ID oder Baudrate zu aktivieren, gehen Sie folgendermaßen vor:

- 1. Schalten Sie die Versorgungsspannung des Umrichters aus.
- 2. Warten Sie, bis alle LED auf dem Umrichter dunkel sind.
- 3. Schalten Sie die Versorgungsspannung des Umrichters wieder ein.

Nach dem Einschalten sind Ihre Einstellungen wirksam.

Damit haben Sie die geänderten Einstellungen aktiviert. □

6.7.3 Überwachung der Kommunikation einstellen

Um die Kommunikation zu überwachen, nutzen Sie eine der folgenden Methoden:

Node Guarding / Life Guarding

Heartbeat

Node Guarding / Life Guarding

Funktionsweise

Node Guarding:

ist immer aktiv, wenn Heartbeat nicht aktiviert ist (p8606 = 0). Node Guarding bedeutet, der Master sendet Überwachungsanfragen an den Umrichter, die dieser beantwortet.

Im Umrichter findet keine Überwachung der Kommunikation statt. Reaktionen auf einen Busausfall stellen Sie im Master ein.

Life Guarding:

ist aktiv, wenn Sie über p8604.0 und p8604.1 eine Lifetime ≠ 0 einstellen. Life Guarding bedeutet, der Umrichter überwacht die Überwachungsanfrage des Masters und meldet die Störung F8700 (A) mit Störwert 2, wenn er nicht innerhalb der Life Time ein Life Guarding-Protokoll empfängt (Life Guarding Event). Weitere Reaktionen auf einen Busausfall stellen Sie im Master ein.

Wert für Lifetime berechnen

Life Time = Guard time in Millisekunden (p8604.0) * Life Time Factor (p8604.1)

Heartbeat

Funktionsweise

Der Slave sendet periodisch Heartbeat-Nachrichten. Andere Slaves und der Master können dieses Signal überwachen. Im Master stellen Sie die Reaktionen ein, für den Fall, dass der Heartbeat ausbleibt.

Wert für Heartbeat einstellen

Stellen Sie in p8606 die Zykluszeit für den Heartbeat in Millisekunden ein.

Verhalten des Umrichters bei einer Bus-Störung

Bei einer Bus-Störung geht der CAN-Master in den Zustand "Bus OFF". Im Umrichter stellen Sie die Reaktion auf die Bus-Störung über den Parameter p8641 ein. Werkseinstellung: p8641 = 3 (AUS3).

Wenn Sie die Bus-Störung behoben haben, gibt es folgende Möglichkeiten, die Kommunikation wieder zu starten:

 Sie schalten die Versorgungsspannung des Umrichters aus, warten Sie bis alle LED auf dem Umrichter dunkel sind und schalten Sie die Versorgungsspannung des Umrichters wieder ein.

Damit heben Sie den Bus OFF-State auf und starten die Kommunikation neu.

- Sie quittieren die Bus-Störung über den DI 2 oder direkt über p3981 und starten die Kommunikation entweder
 - manuell indem Sie p8608[0] = 1 setzen. Nach dem Starten wird p8608 intern wieder auf 0 gesetzt.
 - automatisch im Zwei-Sekunden-Takt. Dazu müssen Sie p8608[1] bei der Inbetriebnahme auf 1 gesetzt haben.

MARNUNG

Wirkungsloser AUS-Befehl durch Bus-Störung

Bei einer Bus-Störung hat die übergeordnete Steuerung keinen Zugriff auf den Umrichter. Wenn als Reaktion für die Bus-Störung p8641 = 0 (keine Reaktion) eingestellt ist, bleibt der Motor eingeschaltet, auch wenn die übergeordnete Steuerung einen AUS-Befehl an den Umrichter schickt.

Projektieren Sie einen zusätzlichen AUS-Befehl über Klemmen.

6.8 Fehlerdiagnose

Objekte zur Signalisierung und Beschreibung von Fehlern und Betriebszuständen

Zum Anzeigen von Fehlern und Betriebszuständen gibt es folgende Möglichkeiten:

- Anzeige des Betriebszustands über LED
- Anzeige des Betriebszustands über das Alarmobjekt (Emergeny Object)
 - Umrichterspezifische Störliste (Predefined Error-Field)
 - CANopen Störregister (Error Register)

Erläuterung der LED-Symbole für CANopen

	LED ist an
2 s	LED blinkt langsam
2 s	LED blinkt schnell
2 s	LED blinkt im Modus "single flash"
2 s	LED blinkt im Modus "double flash"
	LED blinkt mit variabler Frequenz

Tabelle 6-7 Feldbus CANopen

BF	Erläuteru	ing				
崇	Datenaus	Datenaustausch zwischen Umrichter und Steuerung ist aktiv (Zustand "Operational")				
	Feldbus	Feldbus ist im Zustand "Pre-Operational"				
	Feldbus	ist im Zustand "Stopped"				
<u> </u>	Kein Feld	dbus vorhanden				
7,75	RDY	Bei gleichzeitig blinkender LED RDY:				
	***	Firmware-Update fehlgeschlagen				
	Warnung	g – Grenze erreicht				
	Fehlerere	eignis in übergeordneter Steuerung (Error Control Event)				
		Umrichter wartet auf Aus- und Wiedereinschalten der Spannungsversorgung nach Firmware-Update				
	Falsche Speicherkarte oder Firmware-Update fehlgeschlagen					
	Firmware	e-Update ist aktiv				

Anzeige des Betriebszustands über das Alarmobjekt (Emergeny Object)

Fehlerzustände werden über das Alarmobjekt (Emergency Object), OV-Index 1014 im Emergency Telegram angezeigt. Es hat folgenden Aufbau:

Byte 0 1	Byte 2	Byte 3 4	Byte 5	Byte 6	Byte 7
CANopen Errorcode	CANopen Error Register	SINAMICS Störnummer	Antriebs- objekt (immer = 1)	reserviert	reserviert

• Byte 0 und 1: CANopen-Errorcode

Byte 2: Codierungen für das CANopen-Error-Register

• Byte 5: Nummer des Antriebsobjekts. Dies ist bei G120-Umrichtern immer = 1

Störungen lösen ein Emergency Telegram aus und führen zum Abschalten des Antriebs.

Das Emergency Telegram können Sie unterdrücken, indem Sie Bit 31 im Objekt 1014 hex auf 1 setzen.

Damit wird nicht das Abschalten unterdrückt, aber die Meldung der Störung an den Master.

Umrichterspezifische Störliste (Predefined Error-Field)

Die umrichterspezifische Störliste können Sie über folgende Objekte auslesen:

- OV-Index 1003 hex
- Umrichterparameter p8611

Sie enthält die im Umrichter anstehenden Warnungen und Störungen im CANopen-Alarmnummernband 8700-8799.

Die Störungen werden beschrieben in der Reihenfolge ihres Auftretens durch einen Störcode (Errorcode) und eine gerätespezifische Zusatzinformation.

Sobald eine Störung quittiert oder eine Warnung behoben ist, wird sie aus der umrichterspezifischen Störliste gelöscht.

Indem Sie den Subindex 0 im OV-Index 1003 auf 0 setzen oder damit gleichwertig p8611[0] = 0 setzen, quittieren Sie alle anstehenden Störungen des Umrichters.

Tabelle 6-8 CANopen Error Code

Errorcode	Bedeutung	Erläuterung
0000 hex	kein Fehler steht an	Erfolgreiche Quittierung aller Störungen bzw. alle Warnungen in der Anzeige erloschen.
1000 hex	CAN Error 1	Alle sonstigen SINAMICS-Störungen
1001 hex	CAN Error 2	Alle sonstigen CANopen-Warnungen im Alarmnummernband F08700 bis F08799
8110 hex	CAN-Überlauf, Nach- richt verloren	CBC: Telegrammverlust (A(N)08751) [Warnung]
8120 hex	CAN Error Passive	CBC: Fehlerzahl für Error Passive überschritten (A08752) [Warnung]
8130 hex	CAN Life Guard Error	CBC: Kommunikation fehlerhaft, Alarmwert 2 F08700(A) [Störung/Warnung]

CANopen Störregister (Error Register)

Das Störregister können Sie über folgende Objekte auslesen:

- OV-Index 1001 hex
- Umrichterparameter r8601

Es zeigt im Emergency Telegram in Byte 2 die Störung an.

Tabelle 6-9 CANopen Error Register

Error Regis- ter	Bedeutung	Erläuterung
Bit 0	generic error	Bei jedem von CAN erfassten Alarm gesetzt.
Bit 4	communication error	Wird bei CAN-Kommunikations-Alarmen gesetzt (Alarme im Bereich 08700 08799).
Bit 7	manufacturer error	Wird bei allen Alarmen außerhalb des Bereichs 08700 08799 gesetzt.

Verhalten im Fehlerfall

Bei einem Fehler in der CAN-Kommunikation, z. B. zu viele Telegrammausfälle, meldet der Umrichter der Fehler F(A)08700(2).

Weitere Informationen finden Sie im Listenhandbuch Ihres Umrichters.

Übersicht der Handbücher (Seite 232)).

Die Reaktion des CAN-Knotens stellen Sie in p8609 ein.

- p8609 = 0 Pre-Operational
- p8609 = 1 Keine Änderung (Werkseinstellung)
- p8609 = 2 Stopped

Die Reaktion des Umrichters stellen Sie in p8641 ein:

- p8641 = 0 Keine Reaktion (Werkseinstellung)
- p8641 = 1 AUS1
- p8641 = 2 AUS2
- p8641 = 3 AUS3

6.9 CAN-Bus-Abtastzeit

Die CAN-Bus-Abtastzeit beträgt 4 ms. Innerhalb dieser Zeitspanne kann der Umrichter Telegramme senden und empfangen.

Empfangstelegramme Zykluszeit

- Bei zyklischen Empfangstelegrammen muss die Zykluszeit größer sein als die doppelte Abtastzeit. Wenn die Zykluszeit kleiner ist, können Telegramme verloren gehen. In diesem Fall erscheint die Warnung A08751.
- Bei Empfangstelegrammen, deren Daten sich nicht schneller ändern als die doppelte Abtastzeit, können Sie eine kürzere Zykluszeit als die doppelte Abtastzeit einstellen, wenn Ihre Applikation erlaubt, dass dabei Telegramme verloren gehen.

Die Warnung A08751 verhindern Sie, indem Sie den Meldungstyp über die Parameter p2118, p2119 auf "Keine Meldung" umstellen.

Kommunikation über AS-i - nur für G110M

Allgemeine Hinweise

Der Umrichter arbeitet mit der erweiterten AS-i-Spezifikation V3.0.

Die Signalgebung erfolgt in Form von Manchester-kodierten Stromimpulsen, die die 28-V-Versorgung überlagern. Entkoppeln Sie die 28-V-Versorgung mit Induktivitäten, damit der Empfänger die übertragenen Meldungen entkoppeln kann.

Die Stromaufnahme der Control Unit beträgt ca. 90 mA, wenn Sie keine digitalen oder analogen Eingänge benutzen. Wenn Sie die digitalen und analogen Eingänge verwenden, beträgt der Strombedarf bis zu 300 mA.

Der Umrichter unterstützt sowohl den Single-Slave-Modus als auch den Dual-Slave-Modus.

Im Single-Slave-Modus besitzt der Umrichter eine Adresse im AS-i-Netzwerk über die vier Bit übertragen werden. Im Dual-Slave-Modus hat jeder Umrichter zwei AS-i-Adressen, über die je vier Bit übertragen werden.

Im Single-Slave-Modus erfolgt die Kommunikation nach dem Protokoll 7.F.E. Im Dual-Slave-Modus über die Protokolle 7.A.5 und 7.A.E.

Voreinstellungen bei der Inbetriebnahme

Zum Konfigurieren der Kommunikation des Umrichters über AS-i stehen Ihnen bei der Inbetriebnahme des Umrichters folgende Möglichkeiten zur Verfügung:

- Voreinstellung 30 Single Slave Modus, Standardadressierung:
 Single-Slave-Modus mit Vorgabe einer Festfrequenz über die Steuerung
- Voreinstellung 31 Dual Slave Modus mit Festsollwerten
 Dual-Slave-Modus mit Vorgabe einer Festfrequenz über die Steuerung
- Voreinstellung 32 -Single Slave Modus, modifizierte Adressierung: : Single-Slave-Modus mit "EIN rechts/AUS1", "EIN links/AUS1", Drehzahlsollwert über CDS0 oder CDS1
- Voreinstellung 34 Dual-Slave-Modus mit "EIN/AUS1", "AUS2"
 Dual-Slave-Modus mit "EIN/AUS1", "AUS2", Drehzahlsollwert über Steuerung

Details zu den Voreinstellungen finden Sie in der Betriebsanleitung Ihres Umrichters.

Übersicht der Handbücher (Seite 232)

Anschluss

Die folgende Tabelle zeigt die AS-i-Steckerbelegung. Weitere Informationen zum Anschließen finden Sie im AS-Interface Systemhandbuch.

Übersicht der Handbücher (Seite 232)

Tabelle 7-1 Pinbelegung

X03 AS-i (M12)	Pin	Funktion	Beschreibung
	1	AS-i +	AS-i Plus-Signal
(39.5.61)	2	0 V	Bezugspotenzial für Klemme 4
	3	AS-i -	AS-i Minus-Signal
	4	24 V	24-V-Hilfsspannung
	5	nicht belegt	

7.1 Adresse einstellen

In der Werkseinstellung haben alle AS-i-Slaves die Adresse 0. Slaves mit der Adresse 0 sind nicht in die Kommunikation eingebunden.

Die Adressen müssen eindeutig sein, können aber beliebig gemischt werden.

Zur Adressvergabe haben sie folgende Möglichkeiten:

- Automatische Adressierung über den AS-i-Master
- Adressierung über das Adressiergerät
- Adressierung über Parameter

Bevor Sie die Adresse einstellen, müssen Sie festlegen, ob der Umrichter als Single Slave oder Dual Slave ins AS-i-Netz integriert ist.

- p2013 = 0: Single Slave (Werkseinstellung)
- p2013 = 2: Dual Slave

Wenn Sie bei der Inbetriebnahme die Voreinstellung 30 oder 32 (Single Slave) bzw. 31 oder 34 (Dual Slave) wählen, wird p2013 mit dem entsprechenden Wert belegt.

Hinweis

Änderungen an p2012 und p2013

Änderungen an den Parametern p2012 und p2013 werden unmittelbar nach dem Ändern wirksam.

Wenn Sie mit Stratdrive arbeiten, müssen Sie die Änderungen netzausfallsicher speichern, damit sie beim Aus- und wieder Einschalten nicht verloren gehen.

Automatische Adressierung über den AS-i-Master

Single Slave

Bei der Automatischen Adressierung wird die Adresse durch den AS-i-Master vergeben. Bei einem Single Slave überprüft der Master, welcher Slave die Adresse 0 besitzt und vergibt diesem die nächste freie Adresse. Diese Adresse wird auch in den Parameter p2012 geschrieben. Wenn mehr als ein Slave die Adresse 0 besitzen, ist eine automatische Adressierung nicht möglich.

Dual Slave

Bei der Automatischen Adressierung wird die Adresse durch den AS-i-Master vergeben. Wenn beide Slaves die Adresse 0 besitzen, wird der zweite Slave verborgen und die Steuerung vergibt eine gültige Adresse für Slave 1.

Danach wird Slave 2 sichtbar mit der Adresse 0 und kann adressiert werden.

Bei älteren AS-i-Mastern ist die automatische Adressierung nicht immer möglich. Nutzen Sie in diesem Fall die manuelle Adressierung und stellen Sie die Adresse über ein Adressiergerät bzw. über Startdrive oder ein Bedienfeld am Umrichter ein.

7.1 Adresse einstellen

Weitere Informationen finden Sie im AS-Interface Systemhandbuch, Abschnitt "Einstellen der AS-i-Adresse"

Übersicht der Handbücher (Seite 232)

Adressierung über das Adressiergerät (z. B.: 3RK1904-2AB02)

Die Adressierung über das Adressiergerät erfolgt Offline.

Weitere Informationen finden Sie im AS-Interface Systemhandbuch, Abschnitt "Einstellen der AS-i-Adresse"

Übersicht der Handbücher (Seite 232)

Adressierung über Parameter

Die Adressvergabe über Parameter erfolgt über p2012[0] und p2012[1].

Wenn Sie die Adresse über Stratdrive vergeben, müssen Sie die Einstellungen netzausfallsicher speichern.

- Adressbereich für Single-Slave-Umrichter, Profil 7.F.E
 - p2012[1]: 0 ... 31, Bereich für A-Adresse, 0A ... 31A
- Adressbereich für Dual-Slave-Umrichter, Profil 7.A.5 oder 7.A.E
 - p2012[0]: 0 ... 31, 33 ... 63 für Slave 1:
 - p2012[1]: 0 ... 31, 33 ... 63 für Slave 2

mit

- 0 ... 31 Bereich für A-Adresse, 0A ... 31A
- 33 ... 63 Bereich für B-Adresse, 1B ... 31B

7.2 Single-Slave-Modus

Im Single-Slave-Modus stehen für die Kommunikation zwischen AS-i-Master und Umrichter vier Bits zur Verfügung. Die vier Bits werden zum Übertragen von Prozessdaten genutzt. Parallel dazu kann die Steuerung über AS-i.P0 eine Diagnoseabfrage starten.

Es gibt folgende Voreinstellungen, beide arbeiten mit dem Profil 7.F.E.

- Voreinstellung 30: Standard Single-Slave-Modus
- Voreinstellung 32: Modifizierter Single-Slave-Modus

Voreinstellung 30: Standard Single-Slave-Modus

In der Standardadressierung gibt die Steuerung den Drehzahlsollwert über die Motorsteuerbits vor (AS-i.DO0 ... AS-i.DO3).

Steuerung -> Umrichter

•	AS-i.DO0	->	p1020 = 2093.0	Festdrehzahl Bit 0
•	AS-i.DO1	->	p1021 = 2093.1	Festdrehzahl Bit 1
•	AS-i.DO2	->	p1022 = 2093.2	Festdrehzahl Bit 2
•	AS-i.DO3	->	p1023 = 2093.3	Festdrehzahl Bit 3

Tabelle 7-2 Festdrehzahlen über die Motorsteuerbits (Seite 224).

Umrichter -> Steuerung

Wenn die Steuerung den Drehzahlsollwert vorgibt, antwortet der Umrichter:

```
    p2080[0] = 53.13 -> AS-i.DI0 Betriebsfreigabe für SPS
    p2080[1] = 899.11 -> AS-i.DI1 Impulse freigegeben
    p2080[2] = 722.0 -> AS-i.DI2 Zustand DI0
    p2080[3] = 722.1 -> AS-i.DI3 Zustand DI1
```

Wenn die Steuerung eine Diagnoseanforderung über AS-i.P0 sendet, so antwortet der Umrichter mit den aktuell anstehenden Stör- bzw. Warnmeldungen.

Tabelle 7-5 Warn- und Störmeldungen über RP0 ... RP3 vom Umrichter an den AS-i-Master (Seite 225).

Voreinstellung 32: Modifizierter Single-Slave-Modus

Die Steuerung gibt im Single-Slave-Modus mit der modifizierten Adressierung Folgendes vor:

Steuerung -> Umrichter

•	AS-i.DO0	->	p3330.0 = 2093.0	EIN rechts / AUS 1
•	AS-i.DO1	->	p3331.0 = 2093.1	EIN links / AUS 1
•	AS-i.DO2	->	p0810 = 2093.2	Drehzahl über Poti oder AI0
•	AS-i.DO3	->	p2104 = 2093.3 p0852 = 2093.3	Störungen quittieren bei positiver Flanke Betriebsfreigabe, wenn p2093.3 = 1

Umrichter -> Steuerung

Der Umrichter sendet als Antwort:

•	p2080[0] = 899.0	->	AS-i.DI0	Einschaltbereit
•	p2080[1] = 807.0	->	AS-i.DI1	Steuerungshoheit
•	p2080[2] = 722.0	->	AS-i.DI2	Zustand DI0
•	p2080[3] = 722.1	->	AS-i.DI3	Zustand DI1

Wenn im Umrichter eine Warnung oder Störung ansteht, sendet der Umrichter eine Störoder Warnmeldung.

Tabelle 7-5 Warn- und Störmeldungen über RP0 ... RP3 vom Umrichter an den AS-i-Master (Seite 225).

Skalierungsfaktoren für die Drehzahl

Der Skalierungsfaktor wird über AS-i.P0 ... AS-i.P3 vorgegeben. Mit dem Senden von AS-i.P0 erfolgt gleichzeitig eine Diagnoseabfrage.

Das heißt, wenn die Steuerung einen Skalierungsfaktor vorgibt und im Umrichter eine Warnung oder Störung ansteht, sendet der Umrichter die aktuellen Warn- bzw. Störmeldungen und übernimmt gleichzeitig den gesendeten Wert, der sich aus AS-i.P3 ergibt als neuen Skalierungsfaktor.

•	AS-i.P0	Skalierungsfaktor Bit 0
•	AS-i.P1	Skalierungsfaktor Bit 1
•	AS-i.P2	Skalierungsfaktor Bit 2
•	AS-i.P3	Skalierungsfaktor Bit 3

Tabelle 7-3 Skalierung des Drehzahlsollwerts über AS-i.P0 ... AS-i.P3 (Seite 224).

7.3 Dual Slave Modus

Im Dual-Slave-Modus stehen für die Kommunikation zwischen AS-i-Master und Umrichter acht Bits zur Verfügung. Die acht Bits werden zum Übertragen von Prozessdaten genutzt. Parallel dazu kann die Steuerung über AS-i.P0 eine Diagnoseabfrage starten.

Es gibt folgende Voreinstellungen:

- Voreinstellung 31: Dual-Slave-Modus mit Festsollwerten
- Voreinstellung 34: Dual-Slave-Modus mit Sollwert über AS-i-Feldbus

Voreinstellung 31: Dual-Slave-Modus mit Festsollwerten

Die Steuerung spricht über je vier Bits die beiden Slaves des Umrichters an.

Über Slave 2 gibt die Steuerung, entsprechend Profil 7.A.E, den Drehzahlsollwert über die Motorsteuerbits vor (AS-i.DO0 ... AS-i.DO2).

Über Slave 1 schickt die Steuerung Daten im zyklischen oder azyklischen Modus, entsprechend Profil 7.A.5.

Ein Bit je Slave benötigt die Steuerung, um den Slave festzulegen.

Voreinstellung 31, Slave 2 mit Profil 7.A.E: Steuerung -> Umrichter

 AS-i.DO0 	->	p1020.0 = 2093.0	Festdrehzahl Bit 0
• AS-i.DO1	->	p1021.0 = 2093.1	Festdrehzahl Bit 1
• AS-i.DO2	->	p1022.0 = 2093.2	Festdrehzahl Bit 2
• AS-i.DO3	->	Auswahl Slave A ode	r Slave B, intern verschaltet

Tabelle 7-4 Festdrehzahlen über die Motorsteuerbits und Reaktion im Umrichter (Seite 225).

Wenn die Steuerung den Drehzahlsollwert vorgibt, antwortet der Umrichter:

Voreinstellung 31, Slave 2 mit Profil 7.A.E: Umrichter -> Steuerung

•	p2080[0] = 53.13	Einschaltbereit von PLC	->	AS-i.DI0
•	p2080[1] = 899.11	Impulse freigegeben	->	AS-i.DI1
•	p2080[2] = 722.0	Zustand DI0	->	AS-i.DI2
•	p2080[3] = 722.1	Zustand DI1	->	AS-i.DI3

Wenn die Steuerung eine Diagnoseanforderung über AS-i.P0 sendet, so antwortet der Umrichter mit den aktuell anstehenden Stör- bzw. Warnmeldungen.

Tabelle 7-5 Warn- und Störmeldungen über RP0 ... RP3 vom Umrichter an den AS-i-Master (Seite 225).

7.3 Dual Slave Modus

Voreinstellung 31, Slave 1 mit Profil 7.A.5: Steuerung -> Umrichter

- AS-i.DO0 -> Zeitsignal für den CTT2-Transfer vom AS-i-Master
- AS-i.DO1
 Datenbit für die CTT2-Übertragung, zyklisch vier Byte oder azyklisch über PKW. Über PKW ist sowohl lesen als auch schreiben von Parametern möglich. Da die Übertragung bitweise erfolgt, ist der Schreib- und Leseprozess sehr langsam.
- AS-i,DO2 -> p0881 = 2093.4 Schnellhalt Override
- AS-i,DO3 -> Auswahl Slave A oder Slave B, intern verschaltet

Voreinstellung 31, Slave 1 mit Profil 7.A.5: Umrichter -> Steuerung

- p2080[4] = 722.2 Zustand DI2 -> AS-i.DI0
- p2080[5] = 722.3 Zustand DI3 -> AS-i.DI1
- Serielle Datenübertragung CTT2, zyklisch vier Byte oder azyklisch -> AS-i.Dl2 über PKW. Über PKW ist sowohl lesen als auch schreiben von Parametern möglich. Da die Übertragung bitweise erfolgt, ist der Schreib- und Leseprozess sehr langsam.
- Zeitsignal für den CTT2-Transfer zum AS-i-Master -> AS-i.DI3

Voreinstellung 34: Dual-Slave-Modus mit Sollwert über AS-i-Feldbus

Die Steuerung spricht über je vier Bits die beiden Slaves des Umrichters an.

Über Slave 2 gibt die Steuerung, entsprechend Profil 7.A.E, die unten aufgeführten Befehle vor (AS-i.DO0 ... AS-i.DO2)

Über Slave 1 schickt die Steuerung den Befehl für Schnellhalt und die Daten im zyklischen oder azyklischen Modus.

Ein Bit je Slave benötigt die Steuerung, um den Slave festzulegen.

Voreinstellung 34, Slave 2 mit Profil 7.A.E: Steuerung -> Umrichter

- AS-i.DO0 -> EIN / AUS 1
- AS-i.DO1 -> AUS 2
- AS-i,DO2 -> Fehler guittieren
- AS-i,DO3 -> Auswahl Slave A oder Slave B, intern verschaltet

Wenn die Steuerung den Drehzahlsollwert vorgibt, antwortet der Umrichter:

Voreinstellung 34, Slave 2 mit Profil 7.A.E: Umrichter -> Steuerung

- p2080[0] = 53.13 Einschaltbereit von PLC -> AS-i.DI0
- p2080[1] = 899.11 Impulse freigegeben -> AS-i.DI1
- p2080[2] = 722.0 Zustand DI0 -> AS-i.DI2
- p2080[3] = 722.1 Zustand DI1 -> AS-i.DI3

Wenn die Steuerung eine Diagnoseanforderung über AS-i.P0 sendet, so antwortet der Umrichter mit den aktuell anstehenden Stör- bzw. Warnmeldungen.

Tabelle 7-5 Warn- und Störmeldungen über RP0 ... RP3 vom Umrichter an den AS-i-Master (Seite 225).

Voreinstellung 34, Slave 1 mit Profil 7.A.5: Steuerung -> Umrichter

- AS-i,DO0 -> Zeitsignal für den CTT2-Transfer vom AS-i-Master
- AS-i.DO1 -> Datenbit für die CTT2-Übertragung, zyklisch vier Byte oder azyklisch über PKW. Über PKW ist sowohl lesen als auch schreiben von Parametern möglich. Da die Übertragung bitweise erfolgt, ist der Schreib- und Leseprozess sehr langsam.
- AS-i,DO2 -> p0881 = 2093.4 Schnellhalt Override
- AS-i.DO3 -> Auswahl Slave A oder Slave B, intern verschaltet

Voreinstellung 34, Slave 1 mit Profil 7.A.5: Umrichter -> Steuerung

- p2080[4] = 722.2 Zustand DI2 -> AS-i.DI0
- p2080[5] = 722.3 Zustand DI3 -> AS-i.DI1
- Serielle Datenübertragung CTT2, zyklisch vier Byte oder azyklisch -> AS-i.Dl2 über PKW. Über PKW ist sowohl lesen als auch schreiben von Parametern möglich. Da die Übertragung bitweise erfolgt, ist der Schreib- und Leseprozess sehr langsam.
- Zeitsignal für den CTT2-Transfer zum AS-i-Master
 AS-i.DI3

7.4 Zuordnungstabellen

Festdrehzahlen - Single Slave

Tabelle 7-2 Festdrehzahlen über die Motorsteuerbits

AS-i.DO3	AS-i.DO2	AS-i.DO1	AS-i.DO0	Reaktion im Umrichter
0	0	0	0	OFF1
0	0	0	1	Ein + Festdrehzahl 1 (WE: 1500 1/min)
0	0	1	0	Ein + Festdrehzahl 2 (WE: -1500 1/min)
0	0	1	1	Ein + Festdrehzahl 3 (WE: 300 1/min)
0	1	0	0	Ein + Festdrehzahl 4 (WE: 450 1/min)
0	1	0	1	Ein + Festdrehzahl 5 (WE: 600 1/min)
0	1	1	0	Ein + Festdrehzahl 6 (WE: 750 1/min)
0	1	1	1	Ein + Festdrehzahl 7 (WE: 900 1/min)
1	0	0	0	Ein + Festdrehzahl 8 (WE: 1050 1/min)
1	0	0	1	Ein + Festdrehzahl 9 (WE: 1200 1/min)
1	0	1	0	Ein + Festdrehzahl 10 (WE: 1350 1/min)
1	0	1	1	Ein + Festdrehzahl 11 (WE: 1500 1/min)
1	1	0	0	Ein + Festdrehzahl 12 (WE: 1650 1/min)
1	1	0	1	Ein + Festdrehzahl 13 (WE: 1800 1/min)
1	1	1	0	Ein + Festdrehzahl 14 (WE: 1950 1/min)
1	1	1	1	Fehler quittieren oder OFF2

Modifizierte Adressierung - Skalierungsfaktoren

Tabelle 7-3 Skalierung des Drehzahlsollwerts über AS-i.P0 ... AS-i.P3

AS-i.P3	AS-i.P2	AS-i.P1	AS-i.P0	Skalierungsfaktor	Frequenz (Hz)
1	1	1	1	1	50
1	1	1	0	0,9	45
1	1	0	1	0,8	40
1	1	0	0	0,7	35
1	0	1	1	0,6	30
1	0	1	0	0,5	25
1	0	0	1	0,45	22,5
1	0	0	0	0,4	20
0	1	1	1	0,35	17,5
0	1	1	0	0,3	15
0	1	0	1	0,25	12,5
0	1	0	0	0,2	10
0	0	1	1	0,15	7,5
0	0	1	0	0,1	5
0	0	0	1	0,07	3,5
0	0	0	0	0,05	2,5

Festdrehzahlen - Dual Slave

Tabelle 7-4 Festdrehzahlen über die Motorsteuerbits und Reaktion im Umrichter

AS-i.DO2	AS-i.DO1	AS-i.DO0	Reaktion im Umrichter
0	0	0	OFF1
0	0	1	Ein + Festdrehzahl 1 (WE: 1500 1/min)
0	1	0	Ein + Festdrehzahl 2 (WE: -1500 1/min)
0	1	1	Ein + Festdrehzahl 3 (WE: 300 1/min)
1	0	0	Ein + Festdrehzahl 4 (WE: 450 1/min)
1	0	1	Ein + Festdrehzahl 5 (WE: 600 1/min)
1	1	0	Ein + Festdrehzahl 6 (WE: 750 1/min)
1	1	1	Fehler quittieren oder OFF2

Warn- und Störmeldungen

Tabelle 7-5 Warn- und Störmeldungen über RP0 ... RP3 vom Umrichter an den AS-i-Master

RP3	RP2	RP1	RP0	AS-i.P0 = 0 -> Warnmeldungen	AS-i.P0 = 1 -> Störungen
0	0	0	0	Keine Warnung	Keine Störung
0	0	0	1	nicht verwendet	Übertemperatur, F00004, F00006
0	0	1	0	nicht verwendet	nicht verwendet
0	0	1	1	Keine Last (A07929)	nicht verwendet
0	1	0	0	Übertemperatur (A07400, A07404. A30502)	l²t-Überlast (F30005, F07936)
0	1	0	1	Überspannung (A07400, A07404, A30502)	Fehlfunktion Ausrüstung (F30009, F01000, F01001, F01002, F01005, F01015, F01018, F01029, F01000- F01300)
0	1	1	0	nicht verwendet	nicht verwendet
0	1	1	1	Unterspannung (A30041, A07402, A07403, A30016)	Fehlfunktion Motor-PTC-Fühler (F07011, F07016)
1	0	0	0	l²t-Überlast (A08705)	Überspannung (F30002, F30011)
1	0	0	1	nicht verwendet	nicht verwendet
1	0	1	1	nicht verwendet	Unterspannung (F00003, F30040, F07802)
1	1	0	0	nicht verwendet	Kurzschluss am Ausgang (F30001, F30017, F30021, F07801, F07808, F07900, F30017, F07807)
1	1	0	1	Verlust Motorphase	Verlust Motorphase (F30015, F07902)
1	1	1	0	nicht verwendet	Safety Fehler (F016xx)
1	1	1	1	Andere Warnungen	Andere Fehler

7.5 Zyklische und azyklische Kommunikation über CTT2

Über CTT2 (combined Transaction Code 2) findet bei AS-i sowohl die zyklische als auch die azyklische Kommunikation statt. Da nur ein Kanal zur Verfügung steht (AS-i.DO1 Master -> Slave, bzw. AS-i.DI3 Slave -> Master), ist gleichzeitiger zyklischer und azyklischer Datenaustausch nicht möglich.

Die Art der Kommunikation - zyklisch oder azyklisch - ist immer im ersten Byte entsprechend nachfolgender Tabelle verschlüsselt.

Tabelle 7-6 CTT2-Befehle

Code (hex)	Erläuterung/Bedeutung	Gefolgt von						
Zyklische	Zyklische Kommunikation							
Zugriff au	f Analogwerte über DS140 DS147. Siehe CP	4 Byte: PWE1, PWE2						
	CP 343-2 P AS-Interface Master oport.automation.siemens.com/WW/view/de/558165	4 Byte: PWE1, PWE2						
Azyklisch	e Kommunikation - Standard							
10 hex	Leseanforderung: Master -> Slave	2 Byte: Index, Länge						
50 hex	Leseanforderung O. K.: Slave -> Master	Index, Daten						
90 hex	Leseanforderung fehlerhaft: Slave -> Master	1 Byte: Standardfehlercode (3 hex)						
11 hex	Schreibanforderung: Master -> Slave	Index, Länge, Daten						
51 hex	Schreibanforderung O. K.: Slave -> Master							
91 hex	Schreibanforderung fehlerhaft: Slave -> Master	1 Byte: Standardfehlercode (3 hex)						
Azyklisch	e Kommunikation - Herstellerspezifisch							
12 hex	Leseanforderung: Master -> Slave	Index, Länge						
52 hex	Leseanforderung O. K.: Slave -> Master	Daten						
92 hex	Leseanforderung fehlerhaft: Slave -> Master	Fehlerobjekt						
13 hex	Schreibanforderung: Master -> Slave	Index, Länge, Daten						
53 hex	Schreibanforderung O. K.: Slave -> Master							
93 hex	Schreibanforderung fehlerhaft: Slave -> Master	Fehlerobjekt						
1D hex	Austauschanforderung: Master -> Slave	Index, Leselänge, Schreiblänge, Schreibdaten						
5D hex	Austauschanforderung O. K.: Slave -> Master	PKE, Index, n-2 Daten						
9D hex	Austauschanforderung fehlerhaft: Slave -> Master	Fehlerobjekt						

Wenn ein azyklischer Auftrag vom Umrichter nicht ausgeführt werden kann, antwortet der Umrichter mit einer der folgenden Fehlermeldungen.

Fehlermeldung	Bedeutung
0	kein Fehler
1	unzulässiger Index
2	falsche Länge
3	Anfrage nicht implementiert
4	beschäftigt (die Anfrage konnte innerhalb des Zeitfensters nicht komplett bearbeitet werden, versuchen Sie es später noch einmal)
5	letzte azyklische Anfrage wurde nicht bestätigt
6	unzulässiger Subindex
7	Befehl "selektive Leseanfrage" fehlt

7.5.1 Zyklische Kommunikation

Umrichter -> Master

Der Umrichter überträgt zyklisch die Daten von p2051[1] und p2051[2], im Umfang von vier Bytes an den Master. Diese vier Bytes können Sie in der Steuerung verarbeiten wie Analogdaten. Details zum Zugriff auf Analogdaten entnehmen Sie der Dokumentation Ihres AS-i-Masters.

Wenn Sie bei der Inbetriebnahme die Voreinstellungen 31 oder 34 gewählt haben, sind die beiden Indices wie folgt verschaltet:

- p2051[1] = 63: geglätteter Drehzahlistwert
- p2051[2] = 27: Betrag des geglätteten Stromistwerts

Die Werte werden zum Übertragen entsprechend des Profidrive N2-Datentyps normalisiert. Über p2051[1] und p2051[2] können Sie jeden beliebigen anderen Konnektor-Parameter verschalten und an die Steuerung übertragen.

Master -> Umrichter

Der Master überträgt Daten im "Combined Transaction Type 2" (CTT2) an den Umrichter und schreibt sie in r2050[1] und r2050[2].

Damit Sie diese Werte im Umrichter verarbeiten können, müssen Sie r2050[1] und r2050[2] im Umrichter entsprechend verschalten. Das heißt, wenn die Steuerung den Drehzahlsollwert sendet, müssen Sie den Parameter p1070 (Quelle für den Hauptsollwert) mit r2050 wie folgt verschalten: p1070[0] = 2050[1]

Hinweis

Interne Verschaltung mit Voreinstellung 34

Wenn Sie bei der Inbetriebnahme die "Voreinstellung 34" wählen, wird der Hauptsollwert intern mit r2050[1] verschaltet.

7.5 Zyklische und azyklische Kommunikation über CTT2

Nachdem ein Sollwert vollständig übertragen wurde, wird der dann in der Steuerung anstehende Sollwert als nächster Sollwert übertragen. Sollwertänderungen während der Übertragung werden nicht berücksichtigt.

7.5.2 Azyklische Kommunikation - Standard

Bei dieser Art der azyklischen Kommunikation wird die ID-Leseanfrage und die Diagnose-Leseanfrage unterstützt. Alle anderen Anfragen werden mit der Meldung "Anfrage nicht implementiert" beantwortet.

- ID-Request:
 - Master -> Slave 10 hex 00 hex nn hex
 - Slave -> Master 50 hex 00 hex Hersteller-ID Produkt-ID BB hex
- Diagnoseanfrage:
 - Master -> Slave 10 hex 01 hex nn hex
 - Slave -> Master kein Fehler 50 hex 01 hex 00 hex Slave -> Master general error 50 hex 01 hex 99 hex

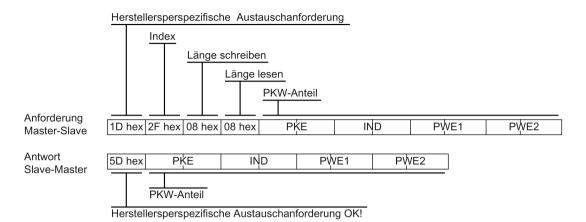
Alle anderen Anfragen Schreib- oder Leseaufträge werden wie folgt beantwortet:

- Leseaufträge 90 hex 03 hex
- Schreibaufträge 91 hex 03 hex

7.5.3 Azyklische Kommunikation - Herstellerspezifisch

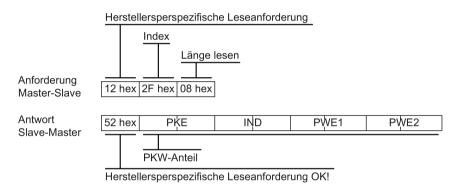
Die herstellerspezifische azyklische Kommunikation erfolgt über Datensatz 47 im PKW-Format. Der Aufbau des PKW-Formats ist identisch mit dem USS-Parameterkanal.

Um das Übertragungsvolumen gering zu halten, gibt es neben dem "normalen" PkW-Mechanismus "Datenaustausch" die Befehle "Daten lesen" und "Daten schreiben"

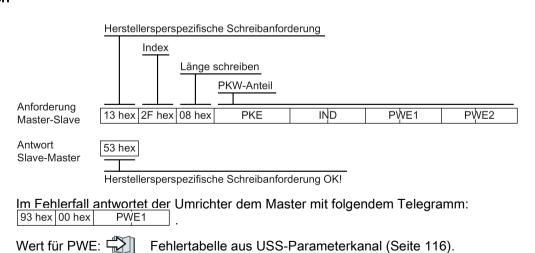

- Datenaustausch:
 - Anforderung Steuerung -> Umrichter
 - Antwort Umrichter -> Steuerung
- Daten lesen:

Der Umrichter schickt einen Lesebefehl und die Daten des letzten Austausch- bzw. Schreibauftrags werden vom Umrichter an die Steuerung übertragen.

Daten schreiben
 Schreiben OK: -> 53 hex.


Da das PKW-Übertragungsverfahren selbst die Übertragungsrichtung festlegt, können sämtliche Parameter per Datenaustauschanforderung/Antwort übertragen werden. Anforderungen zum Lesen und Schreiben von Daten werden primär eingebunden, um beim Wiederholten Lesen eines Parameters oder beim Schreiben von Parametern die zu übertragende Datenmenge zu reduzieren.

Datenaustausch



Daten lesen

Die Daten des letzten Schreib- bzw. Austauschauftrag werden gelesen

Daten schreiben

7.5 Zyklische und azyklische Kommunikation über CTT2

Anhang

A.1 Anwendungsbeispiele zur Kommunikation mit STEP7

Anwendungsbeispiele zur Kommunikation mit STEP 7 finden Sie in folgendem Handbuch:

Funktionshandbuch Feldbusse, Ausgabe 09/2017

(https://support.industry.siemens.com/cs/ww/de/view/109751350)

A.2 Handbücher und technischer Support

A.2.1 Übersicht der Handbücher

Hier finden Sie Handbücher mit weiterführender Information zum Download

Betriebsanleitung CU250S-2

(https://support.industry.siemens.com/cs/ww/de/view/109482997)

Umrichter installieren, in Betrieb nehmen und instand halten. Erweiterte Inbetriebnahme

Betriebsanleitung CU240B/E-2

(https://support.industry.siemens.com/cs/ww/de/view/109482994)

Umrichter installieren, in Betrieb nehmen und instand halten. Erweiterte Inbetriebnahme

Betriebsanleitung CU230P-2

(https://support.industry.siemens.com/cs/ww/de/view/109751316)

Umrichter installieren, in Betrieb nehmen und instand halten. Erweiterte Inbetriebnahme

Betriebsanleitung SINAMICS G120C

(https://support.industry.siemens.com/cs/ww/de/view/109482993)

Umrichter installieren, in Betrieb nehmen und instand halten. Erweiterte Inbetriebnahme

Betriebsanleitung SINAMICS G110M

(https://support.industry.siemens.com/cs/ww/de/view/109478193)

Umrichter installieren, in Betrieb nehmen und instand halten. Erweiterte Inbetriebnahme

Betriebsanleitung SINAMICS G120D mit CU240D-2

(https://support.industry.siemens.com/cs/ww/de/view/109477366)

Umrichter installieren, in Betrieb nehmen und instand halten. Erweiterte Inbetriebnahme

Betriebsanleitung SINAMICS G120D mit CU250D-2

(https://support.industry.siemens.com/cs/ww/de/view/109477365)

Umrichter installieren, in Betrieb nehmen und instand halten. Erweiterte Inbetriebnahme

Betriebsanleitung SIMATIC ET 200pro FC-2

(https://support.industry.siemens.com/cs/ww/de/view/109478246)

Umrichter installieren, in Betrieb nehmen und instand halten. Erweiterte Inbetriebnahme

Funktionshandbuch "Safety Integrated"

(https://support.industry.siemens.com/cs/ww/de/view/109751320)

PROFIsafe konfigurieren.

Fehlersichere Funktionen des Umrichters installieren, in Betrieb nehmen und betreiben.

Funktionshandbuch "Feldbusse"

(https://support.industry.siemens.com/cs/ww/de/view/109751350)

Feldbusse konfigurieren (dieses Handbuch)

Funktionshandbuch "Einfachpositionierer"

(https://support.industry.siemens.com/cs/ww/de/view/109477922)

Einfachpositionierer in Betrieb nehmen

• Listenhandbuch CU250S-2

(https://support.industry.siemens.com/cs/ww/de/view/109482981)

Liste aller Parameter, Warnungen und Störungen, grafische Funktionspläne.

(https://support.industry.siemens.com/cs/ww/de/view/109482961)

Liste aller Parameter, Warnungen und Störungen, grafische Funktionspläne.

(https://support.industry.siemens.com/cs/ww/de/view/109751313)

Liste aller Parameter, Warnungen und Störungen, grafische Funktionspläne.

SINAMICS G120D Listenhandbuch

(https://support.industry.siemens.com/cs/ww/de/view/109477255)

Liste aller Parameter, Warnungen und Störungen, grafische Funktionspläne.

Listenhandbuch SINAMICS G120C

(https://support.industry.siemens.com/cs/ww/de/view/109482977)

Liste aller Parameter, Warnungen und Störungen, grafische Funktionspläne.

Listenhandbuch SINAMICS G110M

(https://support.industry.siemens.com/cs/ww/de/view/109478707)

Liste aller Parameter, Warnungen und Störungen, grafische Funktionspläne.

A.2 Handbücher und technischer Support

Listenhandbuch SIMATIC ET 200pro FC-2
 (https://support.industry.siemens.com/cs/ww/de/view/109478711)
 Liste aller Parameter, Warnungen und Störungen, grafische Funktionspläne.

 Betriebsanleitung SIMATIC ET 200pro (https://support.industry.siemens.com/cs/ww/de/view/21210852)

Dezentrales Peripheriesystem ET 200pro

Handbuch SIMATIC ET 200pro Motorstarter
 (https://support.industry.siemens.com/cs/ww/de/view/22332388)
 ET 200pro Motorstarter

 Systemhandbuch AS-Interface (https://support.industry.siemens.com/cs/ww/de/view/26250840)

Die neueste Ausgabe eines Handbuchs finden

Wenn es mehrere Ausgabestände eines Handbuchs gibt, wählen Sie die aktuellste Ausgabe:

Ein Handbuch konfigurieren

Informationen zur Konfigurierbarkeit von Handbüchern finden Sie im Internet:

MyDocumentationManager

(https://www.industry.siemens.com/topics/global/de/planningefficiency/documentation/Seiten/default.aspx?HTTPS=REDIR).

Wählen Sie "Anzeigen und konfigurieren" und fügen Sie das Handbuch Ihrer "mySupport-Dokumentation" hinzu:

Nicht alle Handbücher sind konfigurierbar.

Der Export des konfigurierten Handbuchs ist im RTF-, PDF- oder XML-Format möglich.

A.2 Handbücher und technischer Support

A.2.2 Projektierungsunterstützung

Katalog

Bestelldaten und technische Informationen für die Umrichter SINAMICS G.

Kataloge zum Download oder Online-Katalog (Industry Mall):

SIZER

Projektierungstool für die Antriebe der Gerätefamilien SINAMICS, MICROMASTER und DYNAVERT T, Motorstarter sowie die Steuerungen SINUMERIK, SIMOTION und SIMATIC-Technology.

Artikelnummer: 6SL3070-0AA00-0AG0

Download SIZER (https://support.industry.siemens.com/cs/ww/de/view/54992004)

Technische Übersicht EMV - Elektromagnetische Verträglichkeit

Richtlinien und Normen, EMV-gerechter Schaltschrankbau

EMV Übersicht (https://support.industry.siemens.com/cs/ww/de/view/103704610)

Projektierungshandbuch EMV-Aufbaurichtlinie

EMV-gerechter Schaltschrankbau, Potenzialausgleich und Leitungsverlegung

EMV-Aufbaurichtlinie (http://support.automation.siemens.com/WW/view/de/60612658)

Technische Übersicht Safety Integrated für Einsteiger

Anwendungsbeispiele für Antriebe SINAMICS G mit Safety Integrated

🐧 Safety Integrated für Einsteiger

(https://support.industry.siemens.com/cs/ww/de/view/80561520)

A.2.3 **Produkt Support**

Weitere Informationen zum Produkt finden Sie im Internet:

Product support (https://support.industry.siemens.com/cs/ww/de/)

Unter dieser URL finden Sie Folgendes:

- Aktuelle Produkt-Informationen (Produktmitteilungen)
- FAQ (häufig gestellte Fragen)
- Downloads
- Der Newsletter versorgt Sie ständig mit den neuesten Informationen zu Ihren Produkten.
- Der Knowledge Manager (Intelligente Suche) findet die richtigen Dokumente für Sie.
- Im Forum tauschen Anwender und Spezialisten weltweit Ihre Erfahrungen aus.
- Finden Sie Ihren Ansprechpartner für Automation & Drives vor Ort über unsere Ansprechpartner-Datenbank, unter dem Begriff "Kontakt & Partner".
- Informationen über Vor-Ort Service, Reparaturen, Ersatzteile und vieles mehr steht für Sie unter dem Begriff "Services" bereit.

A.2 Handbücher und technischer Support

Index

Α	
AC/DC Drive-Profil, 87 antriebsunabhängige Kommunikationsobjekte, 194 Anwendungsbeispiel, 40, 75 Applikationsbeispiel, 75, 145 Parameter zyklisch über PROFIBUS schreiben und lesen, 40 azyklische Kommunikation, 42	G Geräteprofil, 170 Gleichstrombremsung, 26 GSD (Generic Station Description), 76 GSDML (Generic Station Description Markup Language), 63
_	Н
B Betriebsanleitung, 232	Handlungsanweisung, 3 Hotline, 237
С	1
CAN COB, 170 COB-ID, 171 EMCY, 170 Geräteprofil, 170 NMT, 170	Impulsfreigabe, 22 Impulslöschung, 22 IND (Seitenindex), 38, 119 Industry Mall, 236
SDO, 170	Κ
SYNC, 170 CANopen-Kommunikationsprofil, 170 Checkliste PROFINET, 63, 85 COB, 170 COB-ID, 171	Katalog, 236 Kommunikation azyklisch, 42 zyklisch, 17
	L
D	Listenhandbuch, 232
Datensatz 47 (DS), 42 DS 47, 42	M
E Einschaltsperre, 22 EMCY, 170 Ethernet/IP, 81	Maximale Leitungslänge Modbus, 125 PROFIBUS, 76 PROFINET, 62 USS, 111 MELD_NAMUR (Störungswort nach VIK-Namur-Definition), 28
F	
Fragen, 237	

Funktionshandbuch, 232

Ν

Netzwerkmanagement (NMT-Service), 172 NMT, 170

Ρ

Parameter-Index, 38, 119
Parameterkanal, 35, 116
IND, 38, 119
Parameternummer, 38
Parameterwert, 42
PDO, 179
PROFIBUS, 75
PROFlenergy, 65
Projektierungsunterstützung, 236

Q

Querverkehr, 41

R

RS485-Schnittstelle, 110

S

SDO, 170, 175
SDO Dienste, 175
Seitenindex, 38, 119
SIZER, 236
Steuerwort
Steuerwort 1, 22
Steuerwort 2, 25
Steuerwort 3, 26
Steuerwort 2 (STW2), 25
Steuerwort 3 (STW3), 26
STW1 (Steuerwort 1), 22
Subindex, 38, 119
Support, 237
Symbole, 3
SYNC, 170

Т

Technologieregler, 26 Telegramm erweitern, 33

U

USS (Universelle serielle Schnittstelle), 111, 116

٧

Vorgehensweise, 3

Ζ

ZSW1 (Zustandswort 1), 23 ZSW3 (Zustandswort 3), 27 Zustandswort Zustandswort 1, 23 Zustandswort 2, 25 Zustandswort 3, 27 Zustandswort 1 (ZSW2), 25 zyklische Kommunikation, 20

Weitere Informationen

SINAMICS Umrichter: www.siemens.com/sinamics

Safety Integrated www.siemens.com/safety-integrated

PROFINET

www.siemens.com/profinet

Siemens AG Digital Factory Motion Control Postfach 3180 91050 ERLANGEN Deutschland

