SIEMENS 4³⁶¹

Stetige Regelventile mit Magnetantrieb, PN 16

MVF461H..

für Warmwasser, Heisswasser und Dampf

- Kurze Stellzeit (<2 s), hohe Auflösung (1 : 1000)
- · Ventilkennlinie wählbar: gleichprozentig oder linear
- Grosses Stellverhältnis
- Wählbare Standardschnittstelle DC 0/2...10 V oder DC 0/4... 20 mA
- Phasenschnitt-Signaleingang für Staefa-Regler
- Mit Stellungsregelung und Stellungsrückmeldung
- · Verschleissfreie induktive Huberfassung
- Notstellfunktion: stromlos A → AB geschlossen
- Reibungsarm, robust und wartungsfrei

Anwendung

MVF461H.. sind Durchgangsventile mit montiertem Magnetantrieb, der mit einer Anschlusselektronik zur Stellungsregelung und -rückmeldung ausgerüstet ist. Stromlos ist der Regelpfad A \rightarrow AB geschlossen.

Durch die kurze Stellzeit, die hohe Auflösung und das grosse Stellverhältnis sind MVF461H.. ideal einsetzbar zur stetigen Regelung von Fernheiz-Hausstationen und heiztechnischen Anlagen mit Heisswasser und Dampf. Nur für geschlossene Kreisläufe.

Тур	DN	k _{VS}	Δp_{max}	Δps	Betriebs-	Stellsignal	Stellzeit	Notstell- funktion
		[m ³ /h]	[kPa]	[kPa]	spannung			luliktion
MVF461H15-0.6		0,6						
MVF461H15-1.5	15	1,5				DO 0 4014		
MVF461H15-3		3				DC 010 V oder		
MVF461H20-5	20	5		4000	AC / DC 24 V	DC 210 V	40-	√
MVF461H25-8	25	8	1000	1000	AC / DC 24 V	oder DC 020 mA	< 2 s	•
MVF461H32-12	32	12	2			oder DC 420 mA		
MVF461H40-20	40	20				DC 420 IIIA		
MVF461H50-30	50	30						

 Δp_{max} = Maximal zulässiger Differenzdruck über dem Regelpfad des Ventils für den gesamten Stellbereich der Ventil-Stellantrieb-Einheit

 Δp_{S} = Maximal zulässiger Differenzdruck (Schliessdruck), bei dem die Ventil-Stellantrieb-Einheit gegen den Druck noch sicher schliesst (bei Verwendung als Durchgangsventil)

k_{VS} = Durchfluss-Nennwert vom Kaltwasser (5 bis 30 °C) durch das voll geöffnete Ventil (H₁₀₀), bei Differenzdruck von 100 kPa (1 bar)

Bestellung

Bei der Bestellung sind Stückzahl, Bezeichnung und Typ anzugeben.

Тур	Artikelnummer	Bezeichnung
MVF461H15-0.6	MVF461H15-0.6	Flanschventil mit Magnetantrieb

Lieferung

Der Ventilkörper und der magnetische Stellantrieb bilden eine konstruktive Einheit und

können nicht getrennt werden.

Ersatzelektronik

Bei einem Defekt der Ventilelektronik ist das Anschlussgehäuse durch den Ersatz

ASE12 auszutauschen.

Der Ersatzelektronik liegt die Montageeinleitung 74 319 0404 0 bei.

Rev.-Nr.

ASE12

Übersichtstabellen siehe Seite 14.

Technik / Ausführung

Ausführliche Funktionsbeschreibung siehe Datenblatt CA1N4028D.

Regelbetrieb

Das Stellsignal wird durch die Elektronik im Anschlussgehäuse in ein Phasenschnitt-Leistungssignal umgewandelt. Dieses baut in der Magnetspule ein Magnetfeld auf. Die Feldkraft bringt den Anker in eine Stellung, die sich durch das Kräftespiel ergibt (Feldkraft, Gegenfeder, hydraulische Kräfte). Auf jede Signaländerung reagiert der Anker rasch mit einer entsprechenden Bewegung, die direkt auf den Schliesskörper des Ventils übertragen wird. Dadurch lassen sich Störgrössen schnell und exakt auskorrigieren.

Die Ventilposition wird permanent induktiv gemessen. Jede anlagenbedingte Abweichung wird durch den internen Stellungsregler rasch ausgeregelt. Der Stellungsregler sorgt für eine exakte Proportionalität zwischen dem Stellsignal und dem Ventilhub und liefert auch die Stellungsrückmeldung.

Ansteuerung

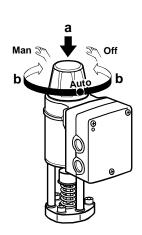
Das Magnetventil kann mit Siemens- oder Fremdreglern angesteuert werden, die über ein DC 0/2 ...10 V- oder DC 0/4...20 mA-Ausgangssignal verfügen.

Um eine optimale Regelgüte zu erreichen, wird empfohlen, das Ventil mit vier Leitern zu verdrahten. **Bei DC-Speisung <u>muss</u> mit vier Leitern verdrahtet werden!**Die Signal-Erdklemme M des Reglers ist mit der M-Klemme des Ventils zu verbinden. M- und GO-Klemme haben das gleiche Potential und sind in der Ventilelektronik intern verbunden.

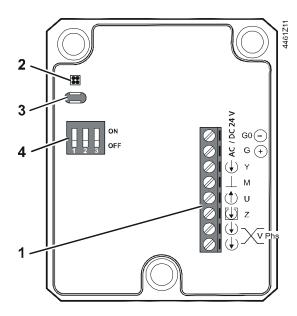
Notstellfunktion

Bei Unterbruch des Stellsignals oder der Betriebsspannung wird der Regelpfad $A \to AB$ durch die Federkraft automatisch geschlossen.

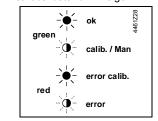
2/14

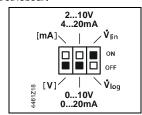

Handbetrieb

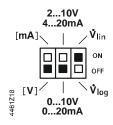
Durch Drücken (a) und Drehen (b) des Handrades:


- im Uhrzeigersinn (CW) kann der Regelpfad A → AB mechanisch auf 80 bis 90 % geöffnet werden.
- im Gegenuhrzeigersinn (CCW) wird der Antrieb ausgeschaltet und das Ventil geschlossen.

Sobald das Handrad gedrückt und gedreht wird, wirkt weder das Zwangssteuersignal Z noch das Eingangssignal Y oder das Phasenschnittsignal auf den Antrieb. Dabei blinkt die grüne LED.


Für den automatischen Regelbetrieb muss das Handrad in der Auto-Position sein. Die grüne LED leuchtet.


Bedien- und Anzeigeelemente im Elektronikgehäuse


- 1 Anschlussklemmen
- 2 Betriebszustand-Anzeige LED

- 3 Schlitz für Autokalibrierung
- 4 DIL-Schalter zur Wahl der Betriebsart

Konfiguration DIL-Schalter

Schalter	Funktion	ON / OFF	Bezeichnung
1		ON	[mA]
945.279 Obe	Stellsignal Y	OFF	[V] ¹⁾
2		ON	210 V, 420 mA
0 OPF	Stellbereich Y und U	OFF	010 V , 020 mA ¹⁾
3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ventil-Kennlinie	ON	V lin (linear) 1)
0 OFF		OFF	V log (gleichprozentig)

Wahl Stellsignal und Stellbereich Y

Spannung oder Strom

(↓) Y	ON OFF	ON OFF	
ON OFF	010 V	210 V	
ON OFF	020 mA	420 mA	4461Z22

Werkseinstellung

Wahl Stellbereich Y und U:

0...10 V / 0...20 mA 2...10 V / 4...20 mA

Wahl Ventilkennlinie Gleichprozentig oder linear

(†) U	ON OFF	ON OFF	
Ri > 500 Ω	010 V	210 V	
Ri < 500 Ω	020 mA	420 mA	4461723


Das Ausgangssignal U (Stellungsrückmeldung) ist abhängig vom Lastwiderstand Ri.

Ri > 500 $\Omega \rightarrow$ Spannungssignal

Ri < 500 Ω \rightarrow Stromsignal

ON OFF	ON OFF	
Y	Y	1461Z24

Zwangssteuerung Z

Signalpriorität

- 1. Handradpositionen Man (Öffnen) oder Aus (Off)
- 2. Zwangssteuereingang Z
- 3. Phasenschnittsignal Phs
- 4. Signaleingang Y

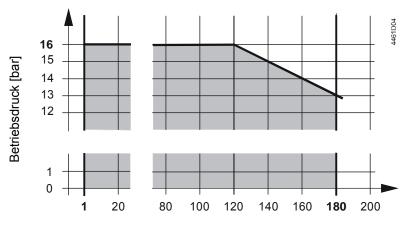
Kalibrierung

Wird das Anschlussgehäuse ASE12 ausgetauscht oder der Antrieb um 180 $^\circ$ gedreht, muss die Ventilelektronik neu kalibriert werden. Dabei muss das Handrad in der Auto-Position sein.

Die Elektronikplatine hat einen Schlitz (Position 3, vorherige Seite). Werden die beiden auf der Innenseite liegenden Kontakte z.B. mit einem Schraubendreher kurzgeschlossen, wird die Kalibrierung ausgelöst. Dabei macht das Ventil einen Vollhub und speichert die aktuellen Endpositionen.

ch.

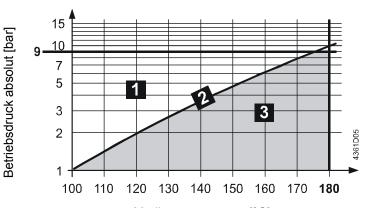
Während der Kalibrierung blinkt die grüne LED zirka 10 Sekunden; siehe auch «Betriebszustand-Anzeige».


Betriebszustand-Anzeige

LED	Anzeige		Funktion	Bemerkung, Massnahme
Grün	Leuchtet		Regelbetrieb	Betrieb; alles in Ordnung
	Blinkt	-)•[-	Kalibrierung in Arbeit	Warten bis Kalibrierung beendet (LED leuchtet dann grün oder rot)
			Im Handbetrieb	Handrad ist in Man oder Off-Position
Rot	Leuchtet	->	Kalibrierungsfehler Interner Fehler	Kalibrierung neu starten (Kontakt im Schlitz kurzschliessen)
				Elektronik ersetzen
	Blinkt	-)•	Netzfehler	Netz überprüfen (ausserhalb Frequenz- oder Spannungsbereich)
			DC-Speisung - / +	DC-Speisung + / - richtig anschliessen
Beide	Dunkel	Ω	Keine Speisung	Netz überprüfen, Verdrahtung kontrollieren
		J	Elektronik defekt	Elektronik ersetzen

Bemessung

Betriebsdruck und Mediumstemperatur

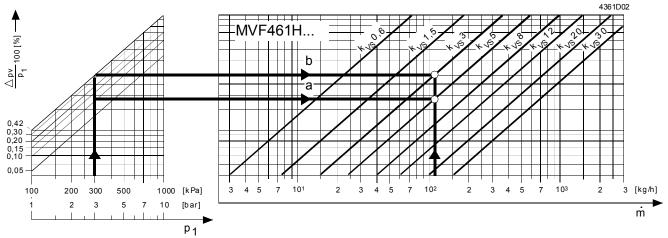

Fluide

Mediumstemperatur [°C]

Weiterführende örtliche Richtlinien sind zu befolgen.

Sattdampf Überhitzter Dampf

Mediumstemperatur [°C]


1 2

3

Wasser	-	
Nassdampf	zu vermeiden	
Sattdampf	erlaubter Betriebsbereich	
überhitzter Dampf	enaubter Bethebsbereich	

Sattdampf-

Durchflussdiagramm

Empfehlung

Der Differenzdruck Δp_{max} über dem Ventil soll für Sattdampf und überhitzten Dampf dem kritischen Druckverhältnis möglichst nahe sein.

Druckverhältnis =
$$\frac{p_1 - p_3}{p_1} \cdot 100\%$$

 p_1 = absoluter Druck vor dem Ventil in kPa p_3 = absoluter Druck nach dem Ventil in kPa

Berechnung des k_{vs}-Wertes für Dampf

Unterkritischer Bereich

$$\frac{p_{_1}-p_{_3}}{p_{_1}}\cdot 100\% < 42\%$$

Druckverhältnis < 42% unterkritisch

$$k_{vs} = 4.2 \cdot \frac{\dot{m}}{\sqrt{p_3 \cdot (p_1 - p_3)}} \cdot k$$

Überkritischer Bereich

$$\frac{p_1 - p_3}{p_1} \cdot 100\% \ge 42\%$$

Druckverhältnis ≥ 42% überkritisch (nicht empfohlen)

$$k_{vs} = 8.4 \cdot \frac{\dot{m}}{p_1} \cdot k$$

 \dot{m} = Dampfmenge in kg/h

k = Faktor für Überhitzung des Dampfes = $1 + 0.0013 \cdot \Delta T$ (bei Sattdampf ist k = 1)

 ΔT = Temperaturdifferenz in K zwischen Sattdampf und überhitztem Dampf

Beispiel

Unterkritischer Bereich

gegeben Sattdampf 133,54 °C

 p_1 = 300 kPa (3 bar) \dot{m} = 110 kg/h

Druckverhältnis = 12 %

Überkritischer Bereich

Sattdampf 133,54 °C

 $p_1 = 300 \text{ kPa } (3 \text{ bar})$

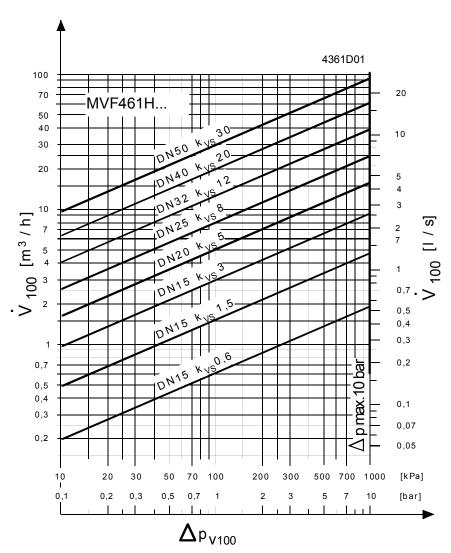
 \dot{m} = 110 kg/h Druckverhältnis \geq 42 %

(überkritisch zulässig)

k_{vs}, Ventiltyp

gesucht k_{vs}, Ventiltyp

Lösung $p_3 = p_1 - \frac{12 \cdot p_1}{100}$ $p_3 = 300 - \frac{12 \cdot 300}{100} = 264 \text{ kPa (2,64 bar)}$


 $k_{vs} = 4.2 \cdot \frac{110}{\sqrt{264 \cdot (300 - 264)}} \cdot 1 = 4.74 \text{ m}^3 / \text{h}$

gewählt $k_{vs} = 5 \text{ m}^3/\text{h}$ \Rightarrow MVF461H20-5

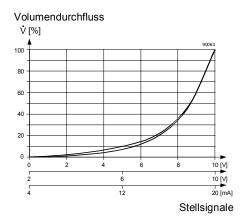
 $k_{vs} = 8.4 \cdot \frac{110}{300} \cdot 1 = 3.08 \text{ m}^3 \text{ / h}$

 $k_{vs} = 3 \text{ m}^3/\text{h}$ \Rightarrow MVF461H15-3

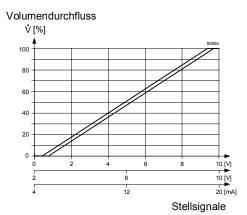
Wasser - Durchflussdiagramm

 Δp_{V100} = Differenzdruck über dem voll geöffneten Ventil und dem Regelpfad A \to AB bei Volumendurchfluss \mathring{V}_{100}

 \dot{V}_{100} = Volumendurchfluss durch das voll geöffnete Ventil (H₁₀₀)


Δρπωx = Maximal zulässiger Differenzdruck über dem Regelpfad des Ventils für den gesamten Stellbereich der Ventil-Stellantrieb-Einheit

 $100 \text{ kPa} = 1 \text{ bar} \approx 10 \text{ mWS}$


 $1 \text{ m}^3/\text{h} = 0.278 \text{ l/s Wasser von } 20 \,^{\circ}\text{C}$

Ventilkennlinien

gleichprozentig

linear

7/14

Anschlussart 1)

Der 4-Draht-Anschluss ist generell zu bevorzugen!

4-Draht-Anschluss

	S _{NA}	P _{MED}	S _{TR}	P _{TR}	l _F	1,5	squerschnitt 2,5	4,0
Тур	[VA]	[W]	[VA]	[W]	[A]	max. Le	itungslänge	e L [m]
MVF461H15-0.6								
MVF461H15-1.5								
MVF461H15-3	33	15	≥50	≥50	3,15	60	100	160
MVF461H20-5								
MVF461H25-8								
MVF461H32-12	43	20	≥75		4	40	70	120
MVF461H40-20	65	26	≥100	≥70	6.2	30	50	80
MVF461H50-30	US	20	≥100		6,3	30	50	60

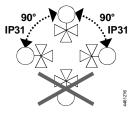
S_{NA} = Nominale Scheinleistung

P_{MED} = Typische Leistungsaufnahme in der Applikation S_{TR} = Minimale Scheinleistung des Transformators

P_{TR} = Minimale Leistung der DC Speisung

I_F = Minimale erforderliche träge Sicherung

 Maximale Leitungslänge. Für den 4-Draht-Anschluss ist bei 1,5 mm² Cu eine maximale Länge der separaten Stellsignalleitung bis 200 m möglich.


Montagehinweise

Dem Ventil liegt die Montageanleitung Nr. 74 319 0378 0 bei.

Vorsicht △

Das Ventil darf nur in Pfeilrichtung (A → AB) eingesetzt werden. Durchflussrichtung beachten!

Montagelage

Installationshinweise

• Der Stellantrieb darf nicht durch die Wärmeisolation umhüllt sein.

Elektrische Installation siehe «Anschlussschemas» auf Seite 10.

Wartungshinweise

Reparatur

Die reibungsarme, robuste, wartungsfreie Konstruktion erübrigt einen periodischen Service und gewährleistet eine lange Lebensdauer.

Der Ventilstössel ist nach aussen durch eine wartungsfreie Stösseldurchführung abgedichtet.

Leuchtet die rote LED dauernd, muss die Elektronik neu kalibriert oder ersetzt werden.

Bei einem Defekt der Ventilelektronik ist das Anschlussgehäuse ASE12 auszutauschen

(siehe Austausch- Montageanleitung 74 319 0404 0).

Warnung 🛆

Das Anschlussgehäuse darf nicht bei angelegter Spannung aufgesteckt oder abgenommen werden.

Nach dem Austausch muss die Kalibration ausgelöst werden, um die Elektronik optimal auf das Ventil abzugleichen (siehe «Kalibration»).

¹⁾ Alle Angaben bei AC 24V oder DC 24V Speisung

Gemäss Europäischer Richtlinie gilt das Gerät bei der Entsorgung als Elektro- und Elektronik-Altgerät und darf nicht als Haushaltsmüll entsorgt werden.

- Entsorgen Sie das Gerät über die dazu vorgesehenen Kanäle.
- Beachten Sie die örtliche und aktuell gültige Gesetzgebung.

Gewährleistung

Die anwendungsbezogenen technischen Daten müssen eingehalten werden. Bei deren Überschreitung erlischt jegliche Gewährleistung durch Siemens.

Technische Daten

Funktionsdaten Antrieb		
Speisung	nur mit Schutzkleinspannung zugelassen	·
AC 2	4 V Betriebsspannung	AC 24 V ±20% (SELV) oder
		AC 24 V class 2 (US)
	Frequenz	4565 Hz
	Typische Leistungsaufnahme P _{med}	siehe Tabelle "Anschlussart", Seite 8
	Stand by	< 1 W (Ventil geschlossen)
	Nominale Scheinleistung S _{NA}	siehe Tabelle "Anschlussart"
	Erforderlicher Sicherungswert I _F	träge, siehe Tabelle "Anschlussart"
	Externe Absicherung der Zuleitung	Schmelzsicherung max. 10 A träge oder
		Leitungsschutzschalter max. 13 A
		Auslösecharakteristik B, C, D nach EN 60898
		oder
		Stromversorgung mit Strombegrenzung
		von max. 10 A
DC 2	4 V Betriebsspannung	DC 2030 V
Signaleingänge	Stellsignal Y	DC 0/210 V
	od	er DC 0/420 mA
	oder Phasenschnittsignal Pl	ns DC 020 V
	Impedanz DC 0/210 V	100 k Ω // 5nF (Belastung < 0,1 mA)
	DC 0/420 mA	240 Ω // 5nF
	Zwangssteuerung Z	
	Impedanz	22 kΩ
	Ventil schliessen (Z mit G0 verbunder	
	Ventil öffnen (Z mit G verbunden)	> AC 6 V; > DC 5 V
	keine Funktion (Z nicht verdrahtet)	Phasenschnitt- oder Stellsignal Y wirksam
Signalausgänge	Stellungsrückmeldung Spannung	DC 0/210 V; Lastwiderstand > 500 Ω
	Strom	DC 0/420 mA; Lastwiderstand \leq 500 Ω
	Hub-Erfassung	Induktiv
	Nichtlinearität	± 3 % vom Endwert
Stellzeit	Stellzeit	< 2 s
Elektrischer Anschluss	Kabeleinführungen	2 x Ø 20,5 mm (für M20)
	Anschlussklemmen	Schraubklemmen für 4 mm² Draht
	Minimaler Draht-Querschnitt	0,75 mm ²
	Maximale Leitungslänge	siehe «Anschlussart», Seite 8

Funktionsdaten Ventil

Werkstoffe

Masse und Gewichte

Normen und Richtlinien

PN-Stufe	PN16 nach EN 1333		
Zulässiger Betriebsdruck ¹⁾	Im Bereich der zulässigen "Mediumstemperatur"		
	gemäss Diagramm Seite 5		
	Wasser bis 120 °C: 1,6 MPa (16 bar)		
	Wasser über 120 °C: 1,3 MPa (13 bar)		
	Sattdampf: 0,9 MPa (9 bar)		
Differenzdruck Δpmax / Δp _S	1 MPa (10 bar)		
Leckrate bei $\Delta p = 0,1$ MPa (1 bar)	$A \rightarrow AB \text{ max. } 0.05 \% \text{ k}_{VS}$		
Ventilkennlinie 2)	gleichprozentig, n_{gl} =3 nach VDI / VDE 2173		
	oder linear, im Schliessbereich optimiert		
Zulässige Medien Wasser	Kalt- u. Warmwasser, Heisswasser, Wasser mit		
	Frostschutzmittel;		
	Empfehlung: Wasserbehandlung nach VDI 2035		
Dampf	Sattdampf, überhitzter Dampf		
	Trockenheit am Eintritt mindestens 0,98		
Mediumstemperatur	> 1180 °C		
Hubauflösung ∆H / H ₁₀₀	1 : 1000 (H = Hub)		
Stellung wenn Antrieb stromlos	A → AB geschlossen		
Einbaulage	stehend bis liegend		
Arbeitsweise	stetig		
Ventilkörper	Sphäroguss EN-GJS-400-18-LT		
Deckflansch	Sphäroguss EN-GJS-400-18-LT		
Sitz / Schliesskörper	CrNi-Stahl		
Ventilstösseldichtung	EPDM (O-Ring)		
Abmessungen	siehe «Massbilder»		
Gewicht	siehe «Massbilder»		
Elektromagnetische Verträglichkeit	Für Wohn-, Geschäfts- und Gewerbeumgebung		
(Einsatzbereich)			
Produktnorm	EN60730-x		
EU-Konformität (CE)	CA2T4361.1 3)		
RCM Konformität	A5W00004454 ³⁾		
EAC Konformität	Eurasien Konformität für alle MVF		
Gehäuseschutzart			
Stehend bis liegend	IP31 nach EN 60529		
Vibration 4)	IEC 60068-2-6		
	(1 g Beschleunigung, 1100 Hz, 10 min)		
UL Zertifizierung (US)	UL 873, http://ul.com/database		
CSA Zertifizierung	C22.2 No. 24, http://csagroup.org		
Umweltverträglichkeit	Die Produktumweltdeklaration CE1E4361de 3)		
	enthält Daten zur umweltverträglichen		
	Gestaltung und Bewertung (RoHS-Konformität,		
	stoffliche Zusammensetzung, Verpackung,		
	Umweltnutzung und Entsorgung).		
Druckgeräterichtlinie	DGR 2014/68/EU		
Drucktragende Ausrüstungsteile	Bereich: Artikel 1, Sektion 1		
	Definition: Artikel 2, Sektion 5		

¹⁾ In Anlehnung an EN 12266-1 mit 1,5 x Betriebsdruck geprüft (24 bar)

Fluidgruppe 2:

DN 15...50 ohne CE-Zertifizierung gemäss Artikel 4,

Absatz 3 (gute Ingenieurpraxis) 5)

²⁾ Via DIL- Schalter wählbar

 $^{^{\}rm 3)}~$ Die Dokumente können unter http://www.siemens.com/bt/download bezogen werden.

⁴⁾ Für stark vibrierende Installationen sollten aus Sicherheitsgründen nur Hochflex-Litzen verwendet werden

⁵⁾ Armaturen deren Produkt aus den Zahlen PS x DN < 1000 ergibt, benötigen keine spezielle Prüfung und erlauben keine CE-Kennzeichnung.

Allgemeine Umgebungsbedingungen

	Betrieb	Transport	Lagerung
	EN 60721-3-3	EN 60721-3-2	EN 60721-3-1
Klimatische Bedingungen	Klasse 3K5	Klasse 2K3	Klasse 1K3
Temperatur	-5+45 °C	-25+70 °C	-5+45 °C
Feuchte	595 % r.F.	595 % r.F.	595 % r.F.
Mechanische Bedingungen	EN 70721-3-6		
	Klasse 3M2		

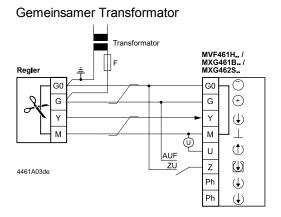
Anschlussklemmen

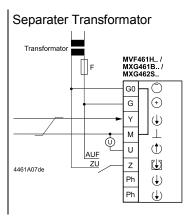
Anschlussschemas

Warnung \triangle

Bei separater Speisung für Regler und Ventil darf sekundär nur ein Transformator geerdet werden.

Achtung △

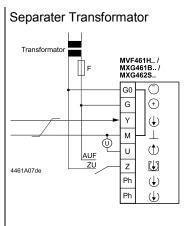

Bei DC-Speisung muss mit vier Leitern verdrahtet werden!


Anschluss an Regler mit 4-Leiter-Ausgang (bevorzugen!) mit Stellsignalen DC 0...10 V DC 2...10 V

DO 2....10 V

DC 0...20 mA

DC 4...20 mA

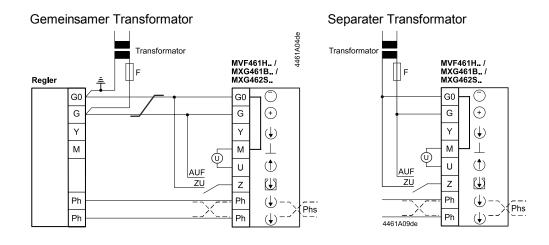

Anschluss an Regler mit 3-Leiter-Ausgang mit Stellsignalen DC 0...10 V DC 2...10 V

DC 0...20 mA

DC 4...20 mA

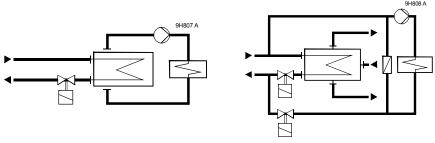
MVF461H.../ MXG461B.../ MXG462S... Regler G0 G \oplus G (\downarrow) М (†) U AUF z \bigcirc 4461A08de (\downarrow) Ph

Gemeinsamer Transformator


<u>(U)</u>

Anzeige der Ventilstellung (nur bei Bedarf). DC 0...10 V \rightarrow 0...100 % Volumendurchfluss Paarweise verdrillt. Werden die Leitungen für die AC 24 V-Speisung und das Stellsignal DC 0...10 V (DC 2...10 V, DC 4... 20 mA) separat geführt, so muss die AC 24 V-Leitung nicht verdrillt werden.

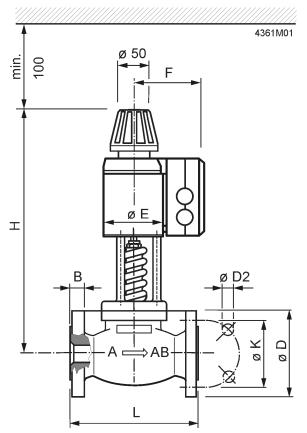
Warnung 🛆


Die Verrohrung muss mit der Potential-Erde verbunden sein!

Für Regler mit Phasenschnitt DC 0...20 V Phs

Anwendungsbeispiele

Die hier gezeigten Beispiele sind Prinzipschemas ohne installationsspezifische Details.



Fernwärmeversorgung Heizungsanlage, indirekter Anschluss

Fernwärmeversorgung Heizungsanlage, direkter Anschluss der Wassererwärmungsanlage

Vorsicht △

Das Ventil darf nur in Pfeilrichtung (A → AB) eingesetzt werden. Durchflussrichtung beachten!

Flanschabmessungen nach DIN2533, PN16

Ventiltyp	DN	L	ø D	ø D2	В	øΚ	Н	øΕ	F	Gewicht
		[mm]	[kg]							
MVF461H15-0.6	15	130	95	4x14	14	65	340	80	115	8,3
MVF461H15-1.5	15	130	95	4x14	14	65	340	80	115	8,3
MVF461H15-3	15	130	95	4x14	14	65	340	80	115	8,3
MVF461H20-5	20	150	105	4x14	16	75	339	80	115	8,9
MVF461H25-8	25	160	115	4x14	16	85	346	80	115	10,0
MVF461H32-12	32	180	140	4x18	18	100	384	100	125	15,7
MVF461H40-20	40	200	150	4x18	18	110	401	100	125	17,8
MVF461H50-30	50	230	165	4x18	20	125	449	125	138	27,2

Gewicht inkl. Verpackung

Revisionsnummern

Тур	Gültig ab RevNr.
MVF461H15-0.6	C
MVF461H15-1.5	C
MVF461H15-3	C
MVF461H20-5	В
MVF461H25-8	В
MVF461H32-12	В
MVF461H40-20	C
MVF461H50-30	В

Herausgegeben von:
Siemens Schweiz AG
Building Technologies Division
International Headquarters
Gubelstrasse 22
6301 Zug
Schweiz
Tel. +41 58-724 24 24
www.siemens.com/buildingtechnologies

© Siemens Schweiz AG, 2010 Liefermöglichkeiten und technische Änderungen vorbehalten

14/14