SIEMENS 2¹⁰⁶

Durchgangsventile VDN2..

Eckventile VEN2..

Umkehreckventile VUN2..

 $\mathsf{ACVATIX}^\mathsf{TM}$

Heizkörperventile

VDN2.. VEN2.. VUN2..

NF-Baureihe, für Zweirohrheizungsanlagen

- Gehäuse aus Messing, matt vernickelt
- DN 10, DN 15 und DN 20 (VDN2.., VEN2..)
- Integrierte Voreinstellung der k_v-Werte
- Innengewinde- und Aussengewindeanschlüsse Rp/R nach ISO 7-1
- Handeinstellknopf/Schutzkappe mitgeliefert
- Ausrüstbar mit thermostatischen RTN.., elektromotorischen SSA.., elektrothermischen STA..3.. oder funkgesteuerten SSA955 Stellantrieben

Die Heizkörperventile werden in Warmwasser-Heizungsanlagen zur individuellen Regelung und Begrenzung der Raumtemperatur einzelner Räume oder Zonen eingesetzt. Ihr Einsatz ist grundsätzlich in allen Räumen zu empfehlen, besonders in solchen mit Fremdwärmeaufkommen oder unterschiedlichem Temperaturniveau.

Typenübersicht

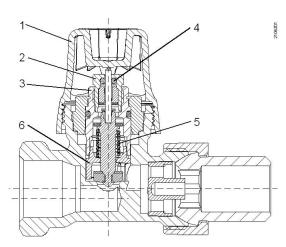
Typ Durchgang	Typ Eck	Typ Umkehreck	DN X _P		k_v-Wert [m ³ /h) 1 - N	k _v - Wert [m³/h) ohne Stellantrieb N
				X _P = 2	0,0720,43	
VDN210	VEN210			X _P = 1,5	0,0570,33	0,63
			l l	X _P = 1	0,0370,22	
			10	X _P = 2	0,140,43	
		VUN210		X _P = 1,5	0.120.37	0,60
				X _P = 1	0.080.24	
				X _P = 2	0,0730,50	
VDN215	VEN215			X _P = 1,5	0,0580,40	0,89
			45	X _P = 1	0,0380,27	
			15	X _P = 2	0,130,50	
		VUN215		X _P = 1,5	0.110.43	0,77
				X _P = 1	0.070.28	
			20	X _P = 2	0,220,70	
VDN220	VEN220			X _P = 1,5	0,170,55	1,41
				X _P = 1	0,110,36	

Bestellung

Beispiel:

Тур	Bestellnummer	Bezeichnung	Stückzahl
VDN220	VDN220	Durchgangsventile	2
ATN2	ATN2	Demontageschutz	1

Lieferung


Ventile und Zubehör werden getrennt verpackt geliefert.

Gerätekombinationen

Produkt	Typen	Datenblatt
Thermostatische Stellantriebe	RTN	N2111
Elektromotorische Stellantriebe	SSA131 / SSA331 / SSA161.05	A6V11858276
	SSA151.05HF / SSA161.05HF	A6V11858278
Funkgesteuerter elektromotorischer Stellantrieb	SSA955	N2700
Elektrothermische Stellantriebe	STA3	N4884

Die Durchflussmenge kann durch eine Blende voreingestellt werden, wobei der volle Hub bei jeder Einstellung zur Verfügung steht. Die Voreinstellung erfolgt mit Hilfe der Schutzkappe.

- Handeinstellknopf/ Schutzkappe
- 2 Stopfbuchse
- 3 Ventileinsatz
- 4 O-Ring
- 5 Rückstellfeder
- 6 Einstellblende

Merkmale und Vorteile

- Die Ventile sind nach der Euronorm EN 215 konstruiert.
- Die Stopfbuchse kann auch dann ausgewechselt werden, wenn die Heizungsanlage unter Druck steht. Dazu ist kein Montagegerät erforderlich.

Zubehör

ATN2
Demontageschutz

ATN4Handverstellknopf

AVN..

Die Merkzahl für die Voreinstellung ist in der k_v-Werte Tabelle (siehe Seite 5) oder in den "Bemessungsdiagrammen" (siehe Seiten 7 – 7) ersichtlich.

Ermittlung des Volumenstroms \dot{V}_{100}

$$\dot{V}_{100} = \frac{Q_{100}}{1,163 \times \Delta T \times f_1} \text{ [m}^3\text{/h]} \\ \begin{vmatrix} Q_{100} & = & \text{Wärmebedarf} & \text{[kW]} \\ \Delta T & = & \text{Temperaturspreizung} & \text{[K]} \\ 1,163 & = & \text{Konstante für Wasser} \\ f_1 & = & \text{Korrekturfaktor} = 1 \text{ für Wasser} \end{vmatrix}$$

- Bestimmung des Differenzdrucks Δp_{v100} über dem vollständig geöffneten Ventil In den meisten Anlagen genügt erfahrungsgemäss ein Differenzdruck Δp_{v100} von 0,05 bis 0,2 bar.
- Berechnung des Durchflusses kv

V₁₀₀

$k_{v} = \frac{V_{100}}{\sqrt{\Delta p_{v100}}} \text{ [m}^{3}/\text{h]}$	$\Delta p_{\nu^{100}} = Differenzdruc$ [bar]	k über dem Ventil
Wärmebedarf	Q ₁₀₀	= 1,2 kW
Temperaturspreizung	ΔΤ	= 20 K
Volumenstrom	$V_{100} = \frac{1,2}{1,1,2}$	= 0,052 m ³ /h
	$V_{100} = \frac{1.2}{1.163 \times 20}$	= 52 l/h
Gewünschter Differenzdruck über dem Ventil	Δp _{v100}	= 0,1 bar
Durchfluss	$k_V = \frac{0,052}{\sqrt{0,1}}$	= 0,17 m ³ /h

Lösung

Beispiel:

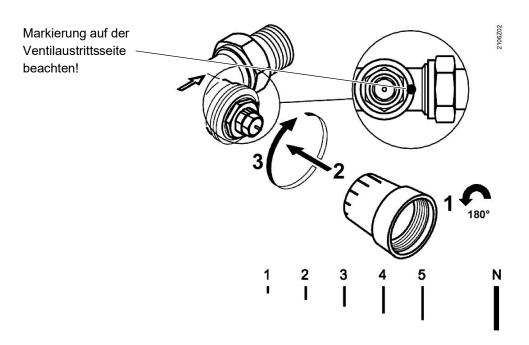
Gemäss Diagramm (siehe "Bemessungsdiagramme" oder Tabelle der k_v-Werte) benötigt ein VDN210 3/8"-Ventil die Voreinstellung 2.

Tipps

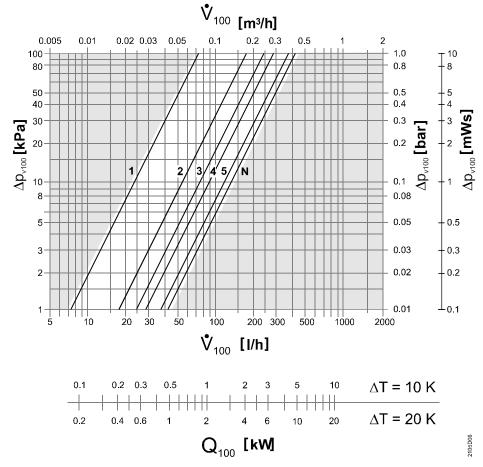
- Einen geräuscharmen Betrieb gewährleistet eine Pumpe, die nicht mehr Druck zur Verfügung stellt als benötigt wird, um die notwendige Wassermenge zu fördern.
- Um der Verschmutzung des Ventils vorzubeugen, wird empfohlen, ein Schmutzfilter in die Anlage einzubauen.

k_v-Werte

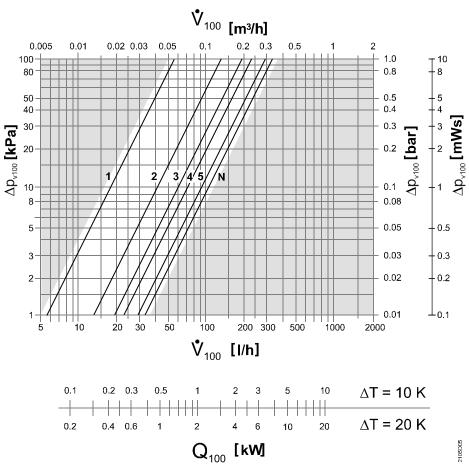
Die k_v -Werte geben die Wassermenge \dot{V}_{100} in m^3/h bei einem Druckabfall Δp_{v100} über dem Ventil von 1 bar an.

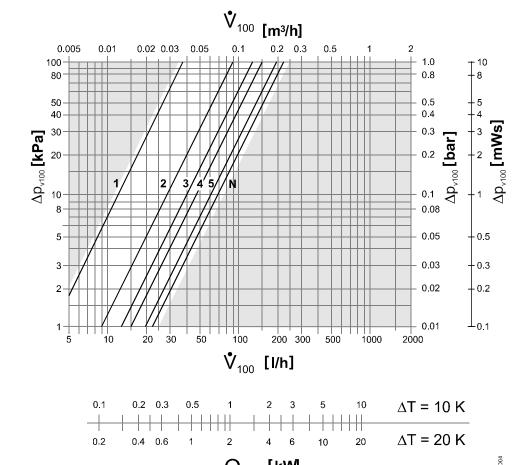

k_v-Werte [m³/h] bei den unterschiedlichen Voreinstellpositionen

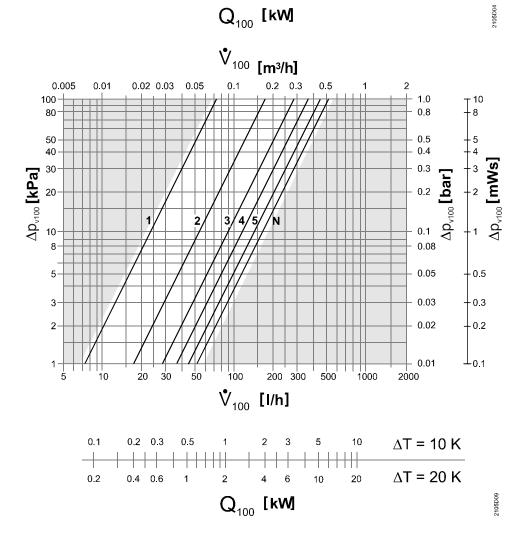
Regelbereich mit Stellantrieben SSA und STA3	✓	✓	✓	✓	√	✓	✓
Regelbereich mit thermostatischen Stellantrieben RTN	✓	✓	✓	√	✓	✓	
Merkzahlen für die Voreinstellung	1	2	3	4	5	N	N(k _{vs})
VDN210 / VEN210 XP 2K	0,072	0,17	0,24	0,28	0,37	0,43	
VDN210 / VEN210 XP 1,5K	0,057	0,135	0,19	0,23	0,29	0,33	0,63
VDN210 / VEN210 XP 1K	0,037	0,089	0,13	0,145	0,19	0,22	
VDN215 / VEN215 XP 2K	0,07	0,17	0,28	0,36	0,45	0,50	
VDN215 / VEN215 XP 1,5K	0,058	0,14	0,23	0,28	0,35	0,40	0,89
VDN215 / VEN215 XP 1K	0.038	0,09	0,15	0,18	0,24	0,27	
VDN220 / VEN220 XP 2K	0,22	0,35	0,44	0,52	0,60	0,71	
VDN220 / VEN220 XP 1,5K	0,17	0,27	0,35	0,42	0,46	0,55	1,41
VDN220 / VEN220 XP 1K	0,11	0,18	0,23	0,28	0,31	0,36	
VUN210 XP 2K	0,14	0,26	0,34	0,39	0,40	0,43	
VUN210 XP 1,5 K	0,12	0,22	0,29	0,33	0,34	0,37	0,60
VUN210 XP 1K	0,08	0,14	0,19	0,21	0,22	0,24	
VUN215 XP 2K	0,13	0,22	0,30	0,39	0,45	0,50	
VUN215 XP 1,5K	0,11	0,19	0,26	0,33	0,38	0,43	0,77
VUN215 XP 1K	0,07	0,12	0,16	0,22	0,25	0,28	

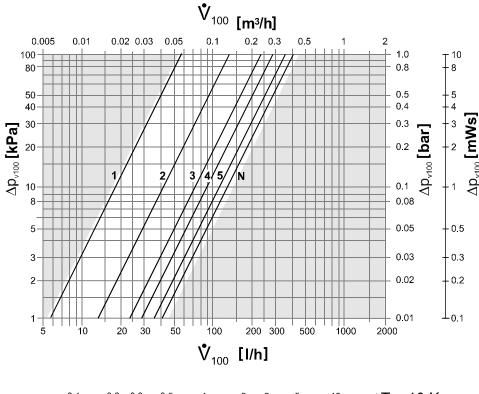

k_v-Werte einstellen

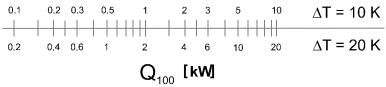
Die dimensionierten k_v-Werte der Heizkörperventile können auf dem Ventilkopf mit Hilfe der um 180° gedrehten Schutzkappe in 5 Stufen + N (voll offen) eingestellt werden.



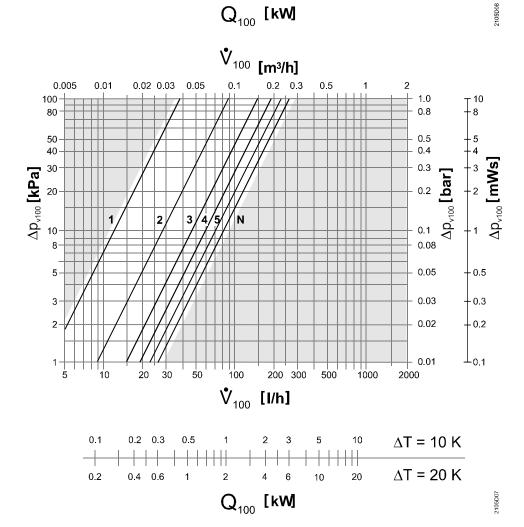

VDN210 VEN210 Xp Band 2 K


VDN210 VEN210Xp Band 1,5 K

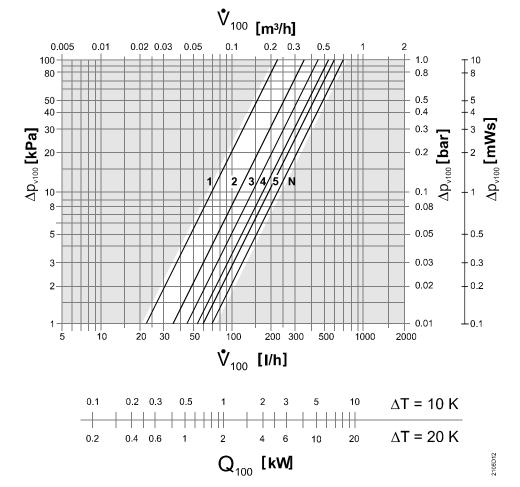


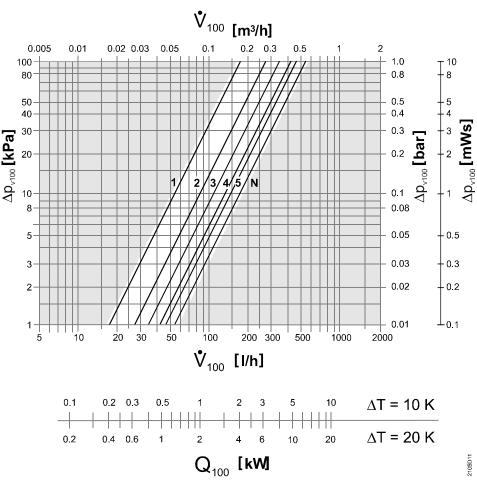


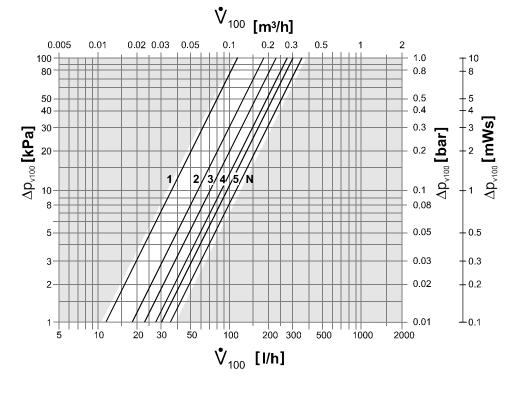
VDN215 VEN215 Xp Band 2 K

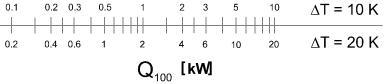


VDN215 VEN215Xp Band 1,5 K

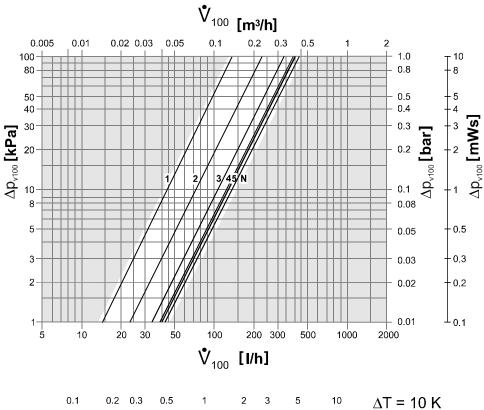


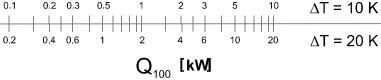

VDN215 VEN215Xp Band 1 K



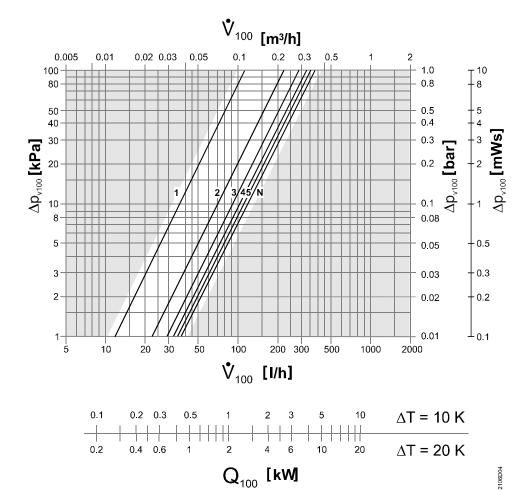


VDN220 VEN220 Xp Band 1,5 K

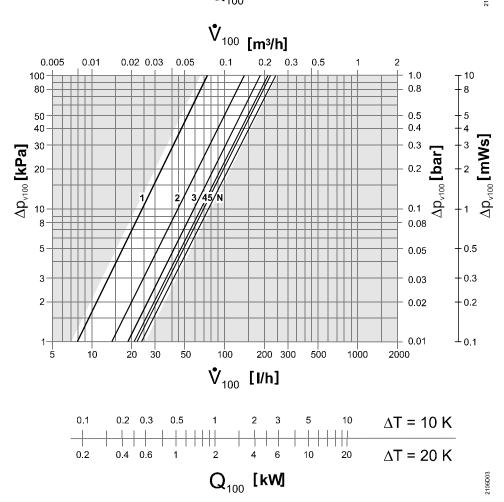



VDN220 VEN220Xp Band 1 K

VUN210 Xp Band 2 K

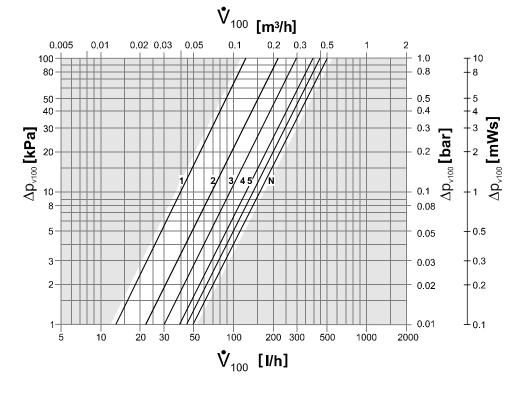


11/16


2106D05

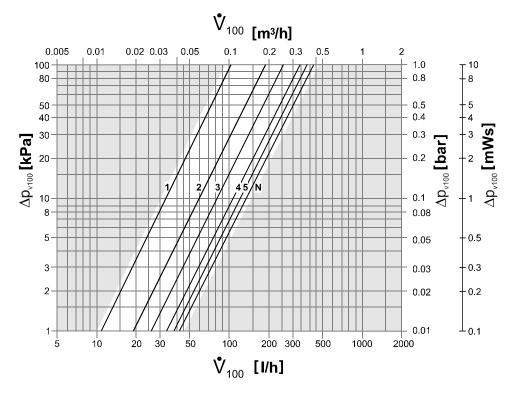
2105D10

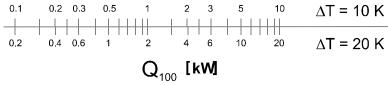
VUN210 Xp Band 1,5 K


VUN210 Xp Band 1 K

12/16

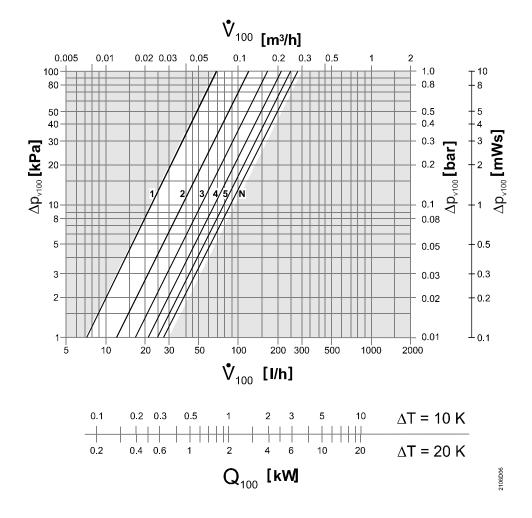
Siemens Heizkörperventile CE1N2106de
Smart Infrastructure 2020-10-06


VUN215 Xp Band 2 K



 Q_{100} [kW]

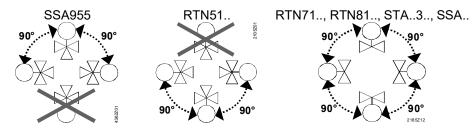
VUN215 Xp Band 1,5 K



2106D07

2106D08

VUN215 Xp Band 1 K



Hinweise

Montage

- Die Montageanleitung ist auf der Verpackung aufgedruckt. Die Montagelage ist von der Auswahl der Stellantriebe abhängig.
- Die Voreinstellung des Ventils ab Werk ist N (vollständig geöffnet).
- Zu beachten sind die Einbaumöglichkeiten und -bedingungen für die korrekte Funktionsweise der Thermostatköpfe und der elektronischen Antriebe.

Montagelage

Wartung

Die Heizkörperventile sind wartungsfrei.

Reparatur

Bei Undichtheit eines Heizkörperventils kann die Stopfbüchse ersetzt werden. Ansonsten können die Ventile nicht repariert werden, sie müssen als Ganzes ersetzt werden.

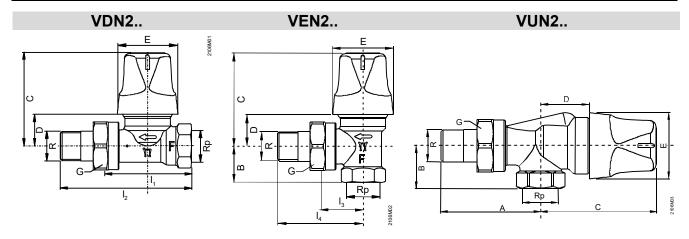
Entsorgung

Das Gerät sollte nicht als Haushaltmüll entsorgt werden.

- Eine Sonderbehandlung für einzelne Komponenten ist unter Umständen vom Gesetz vorgeschrieben oder ökologisch sinnvoll.
- Die örtliche und aktuell gültige Gesetzgebung ist zu beachten.

Die anwendungsbezogenen technischen Daten sind ausschliesslich zusammen mit den im Kapitel "Gerätekombinationen" auf Seite 2 aufgeführten Siemens-Reglern und Antrieben gewährleistet.

Beim Einsatz der Ventile mit Fremdantrieben ist die Funktionalität durch den Anwender sicherzustellen. Jegliche Gewährleistung durch Siemens erlischt.


Technische Daten

Funktionsdaten	PN-Stufe	PN 10			
	Zulässige Medien 1)	Kalt- und Warmwasser, Wasser mit Propylen-Glykol,			
		Wasser mit Ethylen-Glykol < 30%;			
		Empfehlung: Wasserbehandlung nach VDI 2035			
	Mediumstemperatur	1120 °C			
	Zulässiger Betriebsdruck	1000 kPa (10 bar)			
	Differenzdruck Δp _{max}	max. 60 kPa (0,6 bar)			
	Differenzdruck ∆p _{v100}	520 kPa (0,050,2 bar): empfohlener Bereich			
	Nennhub	min 1,2 mm			
Werkstoffe	Ventilkörper	Messing, matt vernickelt			
	Anschlussnippel	Messing, matt vernickelt			
	Schutzkappe	Polypropylen			
	O-Ring	EPDM, NBR			
Abmessungen / Gewichte	siehe "Massbilder", Seite 16				
	Baulänge	EN 215			
	Gewinde	Rp-Innengewinde nach ISO 7-1			
		R-Aussengewinde nach ISO 7-1			
		G-Gewinde nach ISO 228-1			
Normen, Richtlinien und Zulassungen	Druckgeräterichtlinie	DGR 2014/68/EU			
	Drucktragende	Bereich: Artikel 1, Absatz 1			
	Ausrüstungsteile	Definition: Artikel 2, Absatz 5			
	Fluidgruppe 2: ≤ DN 40	ohne CE-Zertifizierung			
		gemäss Artikel 4, Absatz 3			
		(gute Ingenieurspraxis) 2)			
	RoHS-Konformität	konform			
	EAC Konformität	Eurasien Konformität			
	Umweltverträglichkeit	Die Produktumweltdeklaration CE1E2105de 3)			
	3	enthält Daten zur umweltverträglichen Gestaltung			
		und Bewertung (RoHS-Konformität, stoffliche			
		Zusammensetzung, Verpackung, Umweltnutzung			
		und Entsorgung).			

¹⁾ Aus Umweltschutzgründen ist Propylen-Glykol vorzuziehen.

²⁾ Armaturen deren Produkt aus den Zahlen PS x DN < 1000 ergibt, benötigen keine spezielle Prüfung und erlauben keine CE-Kennzeichnung.

³⁾ Die Dokumente können unter http://www.siemens.com/bt/download bezogen werden

					Abmes	sunge	Gewinde [Zoll]			Gewicht				
Тур	DN	I ₁	l ₂	l ₃	I ₄	Α	В	С	D	Е	Rp	R	G	[kg]
VDN210	10	50	75					53	18	35	3/8	3⁄8B	5/8	0,220
VDN215	15	55	82					53	18	35	1/2	1⁄₂B	3/4	0,265
VDN220	20	65	98					53	18	35	3/4	³∕₄B	1	0,385
	ı				ı			ı	ı	ı	1	1	T	
VEN210	10			24	49		20	53	18	35	3/8	3%B	5/8	0,215
VEN215	15			26	53		23	53	18	35	1/2	1⁄₂B	3/4	0,260
VEN220	20			30	63		26	53	18	35	3/4	³∕₄B	1	0,360
													1	,
VUN210	10					51	22	60	25	35	3/8	3%B	5/8	0,285
VUN215	15					57	27	61	26	35	1/2	1⁄₂B	3/4	0,330

Тур	DN	Klemmringverschraubungen										
		für Kı	upfer- und Weich	stahlrohre	für Ku	für Kunststoffrohre mit Alu-Folie						
•		Тур	Anschluss ventilseitig	Anschluss rohrseitig	Тур	Anschluss ventilseitig	Anschluss rohrseitig					
			[Zoll]	Rohr Ø [mm]		[Zoll]	Rohr Ø [mm]					
VDN210	10											
VDN215	15	AVN15-15	1/2	15	AVN15-A16	1/2	16 x 2					
VDN220	20											
VEN210	10											
VEN215	15	AVN15-15	1/2	15	AVN15-A16	1/2	16 x 2					
VEN220	20											
VUN210	10											
VUN215	15	AVN15-15	1/2	15	AVN15-A16	1/2	16 x 2					

Herausgegeben von: Siemens Schweiz AG Smart Infrastructure International Headquarters Theilerstrasse 1a 6300 Zug Schweiz

Tel. +41 58-724 24 24

www.siemens.com/buildingtechnologies

© Siemens Schweiz AG, 2006 Liefermöglichkeiten und technische Änderungen vorbehalten

16/16

Heizkörperventile Smart Infrastructure 2020-10-06