SIEMENS

OpenAir™ VAV-Kompaktregler KNX/PL-Link G..B181.1E/KN

Technische Grundlagen

Herausgegeben von: Siemens Schweiz AG Smart Infrastructure Global Headquarters Theilerstrasse 1a 6300 Zug Schweiz Tel. +41 58-724 24 24 www.siemens.com/buildingtechnologies

2 / 46

Siemens Smart Infrastructure VAV-Kompaktregler KNX/PL-Link G..B181.1E/KN

CE1P3547de 2021-10-25

© Siemens Schweiz AG, 2019

Liefermöglichkeiten und technische Änderungen vorbehalten

Inhaltsverzeichnis

1	Zu dieser Dokumentation	4
1.1	Änderungsnachweis	4
1.2	Bevor Sie beginnen	4
1.3	Zielsetzung dieser Dokumentation	5
1.4	Referenzen	5
2	Gerät	6
2.1	Typenübersicht	6
2.2	Ausführung und Gerätebestandteile	9
2.3	Abmessungen	9
2.4	Human-machine interface	10
2.5	Elektrischer Anschluss	11
2.6	Messverfahren	12
3	Funktionalität / Einsatz	13
3.1	Verwendungszweck	13
3.2	Anwendungsbeispiele	13
4	Elektrische und mechanische Installation	15
4.1	Mechanische Installation / Montage	15
4.2	Elektrische Installation / Verkabelung	16
5	Parametrierung und Betriebsarten	18
5.1	Einstellungen und Benutzerinteraktion	18
5.2	Konfigurations- und Wartungstools	20
5.3	Einstellbeispiele	21
6	Projektierung und Inbetriebnahme	27
6.1	Grundlegendes	27
6.2	Projektierung	28
6.3	Inbetriebnahme	30
7	Sicherheit und EMV-Optimierung	32
7.1	Hinweise zur Sicherheit	32
7.2	Gerätespezifische Vorschriften	33
7.3	Hinweise zur EMV-Optimierung	34
8	Technische Daten	35
9	Datenpunkte und Funktionsbeschreibung	36
9.1	Konfigurationstool-Parameter	36
9.2	Inbetriebnahme Tool-Parameter	37
9.3	S-Mode Gruppenobjekte	38
9.4	Alarme im LTE-Mode (ACS790)	40
9.5	Parameter und Funktionsbeschreibung	41
9.6	Priorisierung der Kommunikationsobjekte	44
10	Entsorgung	45

1 Zu dieser Dokumentation

1.1 Änderungsnachweis

Version	Datum	Änderungen	Kapitel	Seiten
2.5	25.10.2021	Update für Serie H Entfernung nicht mehr aktueller Abschnitte		
2.0	23.03.2017	Update für Serie G	Div.	Div.
1.0	26.02.2016	CE und RCM Konformität, Europäische Richtlinie 2012/19/EU	8 Technische Daten, 10 Entsorgung	39 43

1.2 Bevor Sie beginnen

1.2.1 Marken

Die in dieser Dokumentation verwendeten Drittmarken und deren juristische Inhaber sind nachfolgend aufgeführt. Die Nutzung der Marken unterliegt den internationalen und landesspezifischen rechtlichen Bestimmungen.

Marke(n)	Juristische Inhaber
KNX®	KNX Association, B - 1831 Brussels-Diegem Belgium http://www.knx.org/

Alle in der Tabelle aufgeführten Produktnamen sind registrierte (®) oder nicht registrierte (™) Marken der in der Tabelle aufgeführten jeweiligen Inhaber. Aufgrund dieses Hinweises in diesem Kapitel wird auf eine weitere Kennzeichnung (z.B. mit Symbolen wie ® und ™) der Marken im Interesse der Lesbarkeit verzichtet.

1.2.2 Copyright

Die Vervielfältigung und Weitergabe dieses Dokumentes ist nur mit Einverständnis der Firma Siemens gestattet und darf nur an autorisierte Personen / Gesellschaften mit spezifischen Fachkenntnissen erfolgen.

1.2.3 Qualitätssicherung

Die vorliegenden Dokumentationen wurden mit grösster Sorgfalt zusammengestellt.

- Alle Dokumente werden einer regelmässigen inhaltlichen Prüfung unterzogen.
- Alle notwendigen Korrekturen werden in nachfolgenden Versionen eingearbeitet.
- Anpassungen bzw. Korrekturen an den beschriebenen Produkten ziehen eine Anpassung dieser Dokumente nach sich.

Bitte informieren Sie sich über den aktuellen Stand der Dokumentation.

1.2.4 Dokumentnutzung / Leseaufforderung

Die mit unseren Produkten (Geräte, Applikationen, Tools, etc.) zur Verfügung gestellten oder parallel erworbenen Dokumentationen müssen vor dem Einsatz der Produkte sorgfältig und vollständig gelesen werden.

Wir setzen voraus, dass die Nutzer der Produkte und Dokumente entsprechend autorisiert und geschult sind, sowie entsprechendes Fachwissen besitzen, um die Produkte anwendungsgerecht einsetzen zu können.

Bitte beachten Sie, dass Siemens soweit gesetzlich zulässig keinerlei Haftung für Schäden übernimmt, die durch Nichtbeachtung oder unsachgemässe Beachtung der obigen Punkte entstehen.

1.3 Zielsetzung dieser Dokumentation

Diese Basisdokumentation beschreibt die netzwerkfähigen VAV-Kompaktregler GDB181.1E/KN und GLB181.1E/KN. Diese Geräte dienen der Regelung variabler oder konstanter Luftvolumenströme.

Der Aufbau dieser Dokumentation folgt den zugrundeliegenden Arbeitsabläufen. Nach einer Beschreibung des Geräts und der Anwendungsbereiche wird auf Montage, Projektierung und Inbetriebnahme eingegangen. Ein Referenzteil führt die technischen Daten, Parameter und Datenpunkte auf.

1.4 Referenzen

- [1] G..B181.1E/KN Datenblatt für VAV-Kompaktregler (N3547)
- [2] G..B181.1E/KN Montageanleitung für VAV-Kompaktregler (M3547)
- [3] AST20 VAV Handbediengerät (A6V10631836)
- [4] AST22 Schnittstellenkonverter (A6V11236956)
- [5] ACS931 PC-Software für OEM (N5853)
- [6] ACS941 PC-Software für Service (N5854)
- [7] ETS KNX Engineering Software Download (<u>https://www.knx.org</u>)
- [8] ACS790 Synco Engineering Tool Download (Login erforderlich) (https://support.industry.siemens.com/cs/document/109481853)
- [9] Synco KNX S-Mode Datenpunkte (Y3110)

2 Gerät

- 2.1 Typenübersicht
- 2.1.1 Varianten, Hilfsmittel und Zubehör

 VAV Kompaktregler
 GDB181.1E/KN (5 Nm)
 GLB181.1E/KN (10 Nm)

 Image: White the state of the sta

Hilfsmittel für Inbetriebnahme und Service

AST20	ACS931 / ACS941
	🐐 Wir-Online – 🗆 X File
Line exercised New Var Normal Normal States Normal States Norm	Openation values Determination Openation Openation
Das Handbediengerät AST20 kann zum Setzen und Lesen der VAV- und der Antriebsparameter verwendet werden. Es unterstützt Zugriffsebenen für Service und OEMs.	Die PC-Software für Service ACS941 kann zum Auslesen und Einstellen bestimmter nicht geschützter Parameter verwendet werden. Die PC-Software für OEMs ACS931 unterstützt die uneingeschränkte Konfiguration von VAV-Kompaktreglern und steht daher ausschliesslich VAV-Box OEMs zur Verfügung. Zum Anschluss an einen PC wird der Schnittstellenkonverter AST22 benötigt.
Datenblatt: A6V10631836	Datenblatt ACS931: N5853 / Datenblatt ACS941: N5854 Datenblatt AST22: A6V11236956

Zubehör

Für Informationen über Zubehör und Ersatzteile für VAV-Kompaktregler, siehe Datenblatt N4698.

2.1.2 Auswahlhilfe für alle Typen

2.1.3 Versionsübersicht

Jeder VAV Kompaktregler hat eine Produktserien-Identifikation, die auf dem Typenschild rechts oben zu sehen ist. Anhand der Produktserie können wesentliche Änderungen bei Hard- und Software nachverfolgt werden.

Versions-Kennzeichnung

VAV Kompaktregler der Serie G und neuer verwenden das ETS-Geräteprofil v2.x, das ETS Geräteprofil wird jedoch aus Rückwärtskompatibilitätsgründen entsprechend der Tabelle unten unterstützt.

Kompatibilität

Version	Serie E	Serie F	Serie G	Serie H
Produktionsstart	Produktionsstart 10/2011		01/2017	01/2020
SW Version	4.16	4.18	4.24	4.25
ETS Profil v1.x	unterstützt	unterstützt	unterstützt	unterstützt
ETS Profil v2.x	nicht unterstützt	nicht unterstützt	unterstützt	unterstützt
Änderungen	 Desigo PL-Link oder KNX (LTE- / S- mode). Neuer Differenzdruck- sensor Gleichzeitige Rückmeldung der Klappenposition und des Volumenstroms Adaptive Positionierung. HMI mit Drucktaster und LED 	 Stabilitätsver- besserungen Unterstützung von DMC (Data Matrix Code) basierten Workflows 	- Verbesserte ETS und Desigo ABT Dialoge	- Verbesserte PPS2- Schnittstelle für Programmier- effizienz

2.2 Ausführung und Gerätebestandteile

Die VAV-Kompaktregler bestehen aus einem Differenzdrucksensor, Stellantrieb und digital konfigurierbarer Reglerelektronik. Sie sind zum Befestigen auf Klappenachsen von mindestens 30 mm Länge vorgesehen. Sie sind unterteilt in eine Bodengruppe und ein zweiteiliges Gehäuse.

Die Bodengruppe enthält:

- · Grundplatte aus Stahl mit Luftklappenachsbefestigung für unterschiedliche Achsdurchmesser und -Querschnitte (vgl. Abschnitt 2.3) und Drehwinkelbegrenzer,
- ein wartungsfreies und geräuscharmes Stirnradgetriebe, •
- eine magnetische Hysteresekupplung mit berührungsarmer Kraftübertragung; . Stellantrieb dadurch blockier- und überlastsicher, dies auch im Dauerbetrieb.

Integriert im Gerät sind (Hinweis: der Deckel darf nicht abgenommen werden):

- die Reglerelektronik, •
- der Differenzdrucksensor mit Anschluss-Schläuchen,
- der Synchronmotor für den Klappenantrieb.

- Achsbefestigungsschraube 1
- 2 LED
- 3. Drucktaster
- 4. Konfigurations- und Wartungsschnittstelle (unter Abdeckung)
- Anschlussstutzen für Differenzdruckmessung der 5. Volumenstrom-Box
- Anschlussstutzen für Differenzdruckmessung der 6. Volumenstrom-Box ("+": Seite mit höherem Druck)
- 2 Anschlusskabel (Speisung und Kommunikation), 7. je 2-adrig
- 8. Getriebeausrastschieber
- Drehwinkel-Positionszeiger 9
- 10. Drehwinkel-Begrenzungsschraube

Getriebeausrastschieber

Für die Handverstellung der Luftklappen kann das Getriebe im spannungslosen Zustand über den Getriebeausrastschieber ausgekuppelt werden.

2.3 Abmessungen

Alle Masse in mm

Wichtige Geräteteile

Siemens Smart Infrastructure

2.4 Human-machine interface

Die Benutzerinteraktion mit der Mensch-Maschine-Schnittstelle (Human-machine interface, HMI) ist nachfolgend beschrieben, vgl. ebenso Abschnitt **6.3.1**. Das HMI besteht aus einer LED und einem Drucktaster.

Drucktaster

Aktion	Drucktaster-Bedienung	Rückmeldung
Ein-/Ausschalten des Adressiermodus	Tasterdruck <1s	LED wird rot bzw. dunkel
Reset auf OEM-Einstellungen	Tasterdruck >20s	LED blinkt orange bis Neustart
PL-Link Verbindungstest 1)	Tasterdruck >2s und <20s	LED blinkt 1x orange

LED-Statusanzeige

Farbe	Blinkmu	ister	Beschreibung
Aus			Fehlerfrier Betrieb oder Gerät nicht eingeschaltet
Grün	stetig		Verbindungstest erfolgreich 1)
		0,1 s ein / 0,1 s aus	OEM-Reset läuft
Orange	blinkend	0,25 s ein / 1,75 s aus	Nach Auslösen eines Verbindungstests: warten ¹⁾
	stetig		Gerät ist im Adressier-/Programmiermodus
Rot	blinkend	0,5 s ein / 2 s aus	Interner Fehler: Reset nötig
Not		1 s ein / 1 s aus	Nach Auslösen eines Verbindungstests: Test fehlgeschlagen

¹⁾ Funktion oder Teil der Funktion ist nur bei PL-Link Betrieb verfügbar

Adressierung und Bus-Test mit Drucktaster

- Die VAV Kompaktregler werden mit dem Drucktaster in den Adressiermodus versetzt:
 - Drucktaster drücken (>0.1s und <1s)
 - KNX Busverdrahtung OK → LED leuchtet rot, bis Adressierung / Programmierung abgeschlossen ist
 - KNX Busverdrahtung nicht OK → LED bleibt dunkel

Reset mit Drucktaster Die VAV Kompaktregler können mit dem Drucktaster auf die OEM-Einstellungen zurückgesetzt werden:

- Drucktaster >20s drücken
- LED blinkt orange
- Gerät startet neu

Alle vom OEM einstellbaren Parameter werden auf die OEM-Voreinstellung zurückgesetzt.

PPS2 Schnittstelle Für die OEM-Fabrikprogrammierung oder Inbetriebnahme / Wartung direkt am VAV-Kompaktregler kann ein geeignetes Tool (ACS931 / ACS941 mit AST22, oder AST20) direkt an der PPS2 Schnittstelle angeschlossen werden, vgl. Abschnitt 4.1.

2.5 **Elektrischer Anschluss**

Die VAV-Kompaktregler werden mit zwei vorverdrahteten Anschlusskabeln ausgeliefert, deren Kabelenden mit Aderendhülsen versehen sind.

 $\mathbf{\nabla}$ 2 1 (G) (CE+) (CE-) Tool (∆p) (м) 3547G01 (G0) 2

Tool = 7-polige Konfigurations- und Wartungsschnittstelle (ab Serie E: 7-poliger Anschluss)

Speisungs- und Bus-Anschlusskabel (farbcodiert und markiert)

Anschlussschaltplan

Anschluss an den KNX

Geräteschaltplan

(gilt für alle Typen)

Ader- beschriftung	Aderfarbe	Klemmen- Code	Bedeutung	
Kabel 1: Speisung / schwarze Ummantelung				
1	rot (RD)	G	Spannung Phase AC 24 V	
2	schwarz (BK)	G0	Spannung Neutralleiter AC 24 V	
Kabel 2: Bus-Anschluss / grüne Ummantelung				
1	rot (RD)	CE+	Bus-Anschluss (KNX / PL-Link)	
2	schwarz (BK)	CE-	Bus-Anschluss (KNX / PL-Link)	

Die VAV-Kompaktregler werden als KNX-Geräte an einen Bus nach dem KNX-TP1 Standard angeschlossen. Es sind die KNX-spezifischen Beschränkungen hinsichtlich Leitungslängen, Speisung, Anzahl anschliessbarer Geräte und Abstände zu beachten. Einen Überblick geben die Dokumente [13] und [16] sowie der KNX-Standard.

N1 G..B181.1E/KN N2 RDG400KN (als Beispiel für ein VAV-fähiges Raumgerät)

Hinweis

TP1-Bus

Je nach Gerät kann sich der Anschluss an den Klemmen unterscheiden. Neben Geräten mit Doppelklemmen und solchen mit intern verbundenen Klemmen sind auch Anschlüsse über Abzweigdosen möglich.

Die Betriebsspannung an den Klemmen G und G0 muss den Anforderungen für SELV oder PELV genügen.

Es sind Sicherheitstransformatoren mit doppelter Isolation nach EN 61558 zu verwenden; sie müssen für 100 % Einschaltdauer ausgelegt sein.

2021-10-25

2.6 Messverfahren

Ein Wirkdruckaufnehmer, der üblicherweise in Form eines Messkreuzes, einer Messblende oder einer Venturidüse im Luftstrom vorliegt, ist die Grundlage für die Messung des Luftvolumenstroms.

Differenzdrucksensor Der Luftvolumenstrom wird mit einem Differenzdrucksensor gemessen. Der Istwert des Luftvolumenstroms (absolut und relativ zu Vnom) kann neben dem Istwert der Klappenposition über den Busanschluss übertragen und auf einen übergeordneten Regler geschaltet oder zur Anzeige verwendet werden. Der Differenzdrucksensor arbeitet langzeitstabil ohne Rekalibration.

HinweisEs ist zu beachten, dass in kritischen Fällen eine Materialverträglichkeits-Prüfung
unter Berücksichtigung der Schadstoffe und Konzentrationen durchzuführen ist.

Einstellung desMit Hilfe des Parameters Vn kann der Hersteller der Volumenstrom-Box (OEM) denKennwertes VnAnwendungsbereich des Sensors des VAV-Kompaktreglers (0...300 Pa) werkseitig
an das jeweilige Gerätenennvolumen anpassen. Die Wirkung von Vn ist im
nachfolgenden Diagramm dargestellt.

Berechnung Vn (Δpnom = nominaler Differenzdruck) $V_n = \sqrt{\frac{300 \ [Pa]}{\Delta p_{nom} [Pa]}}$

Berechnungsbeispiel

Es sei angenommen, dass eine Volumenstrom-Box für einen nominalen Differenzdruck von Δ pnom = 120 Pa ausgelegt ist. Dann ist Vn gleich 1.58 zu setzen:

$$V_n = \sqrt{\frac{300 \, Pa}{120 \, Pa}} = 1.58$$

3 Funktionalität / Einsatz

3.1 Verwendungszweck

Anwendung Die VAV-Kompaktregler sind für die Regelung eines variablen oder konstanten Luftvolumenstroms vorgesehen.

Systemumgebungen:

- Gebäudeautomatisierung mit dem Siemens Peripheriebus PL-Link (Desigo Room Automation)
- Synco 700-Gebäudeautomatisierung mit KNX LTE-Mode
- Gebäudeautomatisierungssysteme mit KNX S-Mode

Einsatzmöglichkeiten:

- Zuluftregelung
- Abluftregelung
- Zuluft-/Abluftkaskadenregelung mit
 - Verhältnisregelung 1:1
 - Verhältnisregelung (Über- / Unterdruck)
 - Differenzregelung (Über- / Unterdruck)
- Luftklappen mit einem Nenndrehmoment bis 5 oder 10 Nm

Die VAV-Kompaktregler dürfen nicht in Umgebungen eingesetzt werden, in denen die Luft mit klebrigen und fettigen Bestandteilen durchsetzt oder mit aggressiven Medien beladen ist.

3.2 Anwendungsbeispiele

Im Folgenden wird anhand typischer Anwendungsbeispiele ein Überblick über die Möglichkeiten des Geräts gegeben.

Regelung im ansteuernden Regler

Zu-/Abluftregelung

Grundlage aller mit VAV-Kompaktreglern realisierter Anwendungen ist, dass der Luftvolumenstrom vorzugsweise im ansteuernden Regler geregelt wird.

3.2.1 Anwendungsbeispiel 1: Zu- und Abluftregelung

Verwendet man VAV-Kompaktregler für den Zuluft- und den Abluftkanal, so werden diese in der Regel einzeln vom Raumregler angesteuert. Durch Einstellen der Werte für Vmax und Vmin entsprechend den Beispielen in Abschnitt **5.3** kann ein konstanter Druck, Über- oder Unterdruck in einer Zone oder in einem Raum realisiert werden.

- Legende:
- Bus Feldbus (Modbus, BACnet, KNX etc.)
- N1 Raumgerät mit Temperatursensor
- N2 VAV-Kompaktregler

3.2.2 Bedarfsgeregelte Lüftung / AHU-Optimierung

AHU-Optimierung

Im Zusammenspiel mit einem übergeordneten Universal-/Primärcontroller kann anhand des Rückmeldesignals (Istwert der Klappenstellung) ein Optimierungsalgorithmus für die zentrale Luftaufbereitungsanlage (Air Handling Unit, AHU) angesteuert werden. Diese Anwendung kann bspw. mit einem Universalregler wie z.B. Synco 700 RMU7x0B (ab Serie C) (wie unten dargestellt) oder in Desigo PL-Link Umgebungen realisiert werden.

Die Regelung des Frequenzumformers (VSD) kann auf verschiedenen Wegen erfolgen. Die Abbildung zeigt eine DC 0...10 V Regelung, ebenso könnte je nach Anschlusskonfiguration eine Regelung über das USS- oder das Modbus-Protokoll erfolgen.

Legende:

- N1 Raumgerät mit Temperatursensor
- N2 VAV-Kompaktregler (Zuluft / Abluft)
- N3 Universal- / Primärregler

Elektrische und mechanische 4 Installation

Mechanische Installation / Montage 4.1

Montage und Montage-Einschränkungen

Umgebungsbedingungen

Handverstellung

Mech. Drehwinkelbegrenzung

Konfigurations- und Wartungsschnittelle Für die Montage und Einschränkungen hinsichtlich der Einbaulage ist unbedingt die Montageanleitung [2] zu beachten.

Die zulässige Umgebungstemperatur und die zulässige Umgebungsfeuchte sind zu beachten.

Der Stellantrieb darf manuell nur im spannungslosen Zustand verstellt werden.

Bei Bedarf kann der Drehwinkelbereich durch entsprechendes Positionieren der Stellschraube eingestellt werden.

PC (mit ACS931 oder ACS941) 1

- 2 G..B181..
- 3 Zugentlastung

- G..B181..
- 2

4.2 Elektrische Installation / Verkabelung

4.2.1 Speisungsverkabelung

Die zulässigen Leitungslängen und Querschnitte der AC 24 V -Speisungsverkabelung sind von der Stromaufnahme der Antriebe und vom zulässigen Spannungsabfall der Verbindungsleitungen zu den Antrieben abhängig. Die Leitungslängen können aus dem folgenden Diagramm oder mit Hilfe der angegebenen Formeln bestimmt werden, vgl. hierzu auch die technischen Daten in Abschnitt 8.

Bei der Bestimmung von Leitungslänge und Querschnitt ist ausser dem zulässigen Spannungsabfall der Speiseleitungen (siehe nachfolgende Tabelle) auch die Einhaltung der zulässigen Toleranz der Betriebsspannung am Antrieb zu beachten.

Die Dimensionierung der Leitungen ist vom verwendeten Antriebstyp abhängig und auf folgender Basis zu bestimmen:

Тур	Betriebsspannung	Leiter	Max. zulässiger Spannungsabfall
GDB181 / GLB181	AC 24 V	G0, G	je 4 % (tot. 8 %)

Hinweis

Hinweis

Zulässiger

Spannungsabfall

Der Speisungsspannungsverlust bei AC 24 V darf max. 8 % (4 % über dem G0-Leiter) betragen.

L/P-Diagramm für AC 24 V

Das Diagramm gilt für Betriebsspannungen AC 24 V und zeigt die zulässige Leitungslänge **L** in Funktion der Leistung **P** und als Parameter die Leitungsquerschnitte.

Hinweise zum Diagramm

Die Werte in [VA, W] auf der P-Achse sind den zulässigen Spannungsabfällen $(\Delta U/2U = 4 \%)$ über der Leitung L gemäss vorstehender Tabelle und dem Prinzipschema zugeordnet.

P ist die massgebende Leistungsaufnahme aller parallel geschalteten Antriebe.

Prinzipschema: Spannungsabfall über den Zuleitungen

Formeln für Leitungslänge

Die maximalen Leitungslängen können mit nachstehenden Formeln berechnet werden.

Betriebsspannung	Zulä Spannungs- abfall / Leiter	Formel für Leitungslänge
AC 24 V	4 % von AC 24 V	$L = \frac{1313 \bullet A}{P} [m]$

A Leitungsquerschnitt in [mm²]

L zulässige Leitungslänge in [m]

P Leistungsaufnahme in [VA] oder [W] (Typenschild)

Leistungsaufnahme und zulässiger Spannungsabfall bei 1 Antrieb

Beispiel: Parallelschaltung von 4 Antrieben

Betriebsspannung	Leistungsaufnahme	Zul. Spannungsabfall für Leiter 1 (G), 2 (G0)
AC 24 V	3 VA	4 % von AC 24 V

Bestimmung der Leitungslängen bei 4 Antrieben, bei AC 24 V Speisung. Massgebend für die Leitungsdimensionierung sind nur die AC-Ströme in den Leitungen 1 (G) und 2 (G0). Max. zulässiger Spannungsabfall = **4 % pro Leiter**.

- Leistung = 4 x 3 VA = 12 VA
- Leiterstrom = 4 x 0.125 A = 0.5 A

Zulässige einfache Leitungslänge für G, G0:

- 164 m bei 1.5 mm² Leiterquerschnitt bzw.
- 274 m bei 2.5 mm² Leiterquerschnitt

4.2.2 Busverkabelung

Ausführungen zur Topologie und Adressierung in KNX-Netzwerken finden sich in [9]. Die folgenden Ausführungen setzen elektrische Installationen entsprechend dem Standard KNX-TP1 voraus.

5 Parametrierung und Betriebsarten

5.1 Einstellungen und Benutzerinteraktion

5.1.1 Geräteparameter

Parametereinstellung

Die VAV-Kompaktregler werden in der Regel vom OEM grundlegend konfiguriert, insbesondere der Parameter Vn. Diese Grundkonfiguration ist unabhängig von der verwendeten Systemumgebung (PL-Link, KNX LTE-Mode, KNX S-Mode).

Für die Parametereinstellung stehen Konfigurations- und Wartungstools zur Verfügung, vgl. Abschnitt **5.2**. Je nach Netzwerkumgebung (PL-Link, KNX LTE oder KNX S-Mode) sind weitere Einstellmöglichkeiten verfügbar, vgl. auch Kapitel **9**.

Parameter	Wertebereich	Beschreibung	Werks- einstellung
Betriebsart	VAV / POS	Auswertung des Sollwerts VAV = Sollwert regelt Volumenstrom [%] POS = Sollwert regelt Klappenstellung [%]	VAV
Öffnungs- richtung	UZS (R) / GUZS (L)	Öffnungsrichtung der Luftklappe	UZS (R)
Adaptive Positionierung	Aus / Ein	Adaption der Klappenstellungsrückmeldung an den tatsächlichen Öffnungsbereich ¹⁾ Aus = keine Adaption / 0°90° \rightarrow 0100% Ein = Adaption / z.B. 0°60° \rightarrow 0100%	Aus
Vmin	-20100%	Minimaler Luftvolumenstrom	0 %
Vmax	20120%	Maximaler Luftvolumenstrom	100 %
Vnom	060 000 m³/h	Nominaler Luftvolumenstrom ²⁾	100 m ³ /h
Boxen- koeffizient (Vn)	13,16	Kennwert für Luftvolumenstrom bei nominalem Differenzdruck; vom VAV-Box- OEM eingestellt	1
Höhe ü. M.	0…5000m in 500m Schritten	Korrekturfaktor für den dp-Sensor (einzustellen auf den der tats. Höhe ü. M. nächsten n*500m Wert)	500 Meter

¹⁾ Die Adaption darf nicht eingeschaltet werden, während eine mechanische Blockade vorliegt.

²⁾ Der Wert wird nur zur Anzeige und nicht für den Volumenstromregelkreis verwendet.

Variable Volumenstromregelung (VVS / VAV) Die VAV-Kompaktregler arbeiten im VVS-Betrieb, wenn sie an die Spannungsversorgung angeschlossen sind. Der Arbeitsbereich $V_{min} \dots V_{max}$ wird mit dem Sollwertsignal ausgesteuert.

Variable Volumenstromregelung (KVS / CAV) Eine Konstantvolumenstrom-Regelung wird durch Einstellung des Sollwerts auf einen konstanten Wert oder durch Einstellen von Vmin = Vmax erreicht.

Positionsregelung

Die VAV Kompaktregler können als Klappenantrieb betrieben werden. In dem Fall wird der 0..100% Sollwert als Positionsvorgabe interpretiert.

5.1.2 Berechnungsformeln

Den Parametern liegen folgende Berechnungsformeln zugrunde:

Berechnung
$$\dot{V}_n$$

($\Delta p_n = Nominaler Druck$) $V_n = \sqrt{\frac{300 [Pa}{\Delta p_{nom}[P]}}$
300 Pa stellt die o
sensors dar. Der r
gegebenen nomin
bestimmt, vgl. auc
Min- und Max-Werte $V_{min}[\%] = \frac{min}{nom}$

$$Y_n = \sqrt{\frac{300 \ [Pa]}{\Delta p_{nom}[Pa]}}$$

bere Grenze des Anwendungsbereichs des Differenzdrucknominale Druck bezeichnet den Druck in der VAV-Box bei einem nalen Volumenstrom und wird durch die Spezifikation des OEM ch Abschnitt 2.6.

$$W_{min}[\%] = \frac{min. \ volume \ flow \ [m^3/h]}{nom. \ volume \ flow \ [m^3/h]} \cdot 100\%$$

$$V_{max}[\%] = \frac{max. \ volume \ flow \ [m^3/h]}{nom. \ volume \ flow \ [m^3/h]} \cdot 100\%$$

Istwert als Funktion von Sollwert und Min-/Max-Begrenzung

Istwert als Funktion des

$$FLW [\%] = \frac{Setpoint [\%] \cdot (V_{max} - V_{min}) [\%]}{100\%} + V_{min} [\%]$$

Wirkdrucks

$$FLW \ [\%] = \frac{Setpoint \ [\%] \cdot (V_{max} - V_{min}) \ [\%]}{100\%} + V_{min} \ [\%]$$

Wirkdruck als Funktion des Istwerts

$$\Delta p[Pa] = 300 \, Pa \cdot \left(\frac{FLW[\%]}{100\% \cdot V_n}\right)^2$$

5.1.3 Umwandlung von C-Werten in Vn-Werte

Falls der C-Wert einer VAV-Box bekannt ist, kann dieser in einen entsprechenden Vn-Wert umgerechnet werden, da beide Werte über Apnom verknüpft sind.

Formeln sind über Δpnom verknüpft.

$$\dot{V}_{nom} = \mathbf{C} \cdot \sqrt{\Delta p_{nom}}$$
 and $V_n = \sqrt{\frac{300 \, [Pa]}{\Delta p_{nom}[Pa]}} \rightarrow V_n = \mathbf{C} \cdot \frac{\sqrt{300 \, [Pa]}}{\dot{V}_{nom}}$

Beispiel für eine Box mit C = 57.2 und Vnom = 900 m3/h:

$$V_n = C \cdot \frac{\sqrt{300 \, [Pa]}}{\dot{V}_{nom}} = 57.2 \frac{[m^3/h]}{[\sqrt{Pa}]} \cdot \frac{\sqrt{300 \, [Pa]}}{900 \, [m^3/h]} = 1.1$$

In diesem Fall ist Vn = 1.1 zu setzen, was einem Δ pnom = 248 Pa entspricht.

5.2 Konfigurations- und Wartungstools

Konfiguration und Auslesen der Geräteparameter ist mit folgenden Tools möglich:

- mit der PC-Software ACS941 oder ACS931 zusammen mit dem Schnittstellenkonverter AST22 über die Konfigurations- und Wartungsschnittstelle des VAV-Kompaktreglers,
- mit dem Handbediengerät AST20.

5.2.1 PC-Software ACS941 und ACS931

Einsatzbereiche

Hauptfenster der PC-

Software ACS941

Die PC-Software ACS941 ist für das Service- und Wartungspersonal bestimmt und wird zum Einstellen und Anzeigen der Parameterwerte mittels PC verwendet. Die Bedienung der Software ist in [5] und [6] dokumentiert.

Mit der PC-Software ACS941 können die in Abschnitt **5.1** aufgeführten Parameter eingestellt und ausgelesen werden. Die Software unterstützt Trendfunktionen und kann die vom OEM vorgegebenen Werte den aktuell im Gerät gespeicherten Werten gegenüberstellen, um Manipulationen erkennbar zu machen.

Abb. 1: ACS941 mit VAV (links) und Netzwerk (rechts)-Fenstern

Neben der PC-Software ACS941 steht auch eine OEM-Version ACS931 ([5]) mit erweiterter Funktionalität zur Verfügung, mit der u.a. der Parameter V_n eingestellt werden kann.

5.2.2 Handbediengerät AST20

Mit dem Handbediengerät AST20 können VAV- und Geräteparameter eingestellt oder ausgelesen werden, und es können Geräteinformationen und Nutzungsstatistiken ausgelesen werden. Die Bedienung des Handbediengeräts ist im Datenblatt [3] dokumentiert.

Das Gerät ist für den tragbaren Einsatz vor Ort ausgeführt. Die Spannungsversorgung und Herstellung der Kommunikationsverbindung zwischen dem Einstellgerät und dem VAV-Kompaktregler erfolgen über eines der mitgelieferten Anschlusskabel.

Funktionalität

5.3 Einstellbeispiele

5.3.1 Symbole und Parameter

Legende zu den Einstellbeispielen

- . V Volumenstrom [%]
- . V_{min} Minimaler Volumenstrom [%]
- *.*V_{max} Maximaler Volumenstrom [%]
- . V_{zuluft} Volumenstrom des Zuluftreglers [%]
- \dot{V}_{abluft} Volumenstrom des Abluftreglers [%]
- . V_{master} Volumenstrom des Zuluftreglers (Master) [%]
- Volumenstrom des Abluftreglers (Slave) [%]

5.3.2 Min-/Max-Regelung im übergeordneten Regler

Bei Einstellung des minimalen bzw. maximalen Luftvolumenstroms im übergeordneten Regler müssen zwingend \dot{V}_{min} = 0 % und \dot{V}_{max} = 100 % im VAV-Kompaktregler eingestellt sein.

Einstellbeispiel A1

VVS-Verhältnisregelung 1:1

	Zuluft		Abluft	
	\dot{V}_{min}	V _{max}	\dot{V}_{min}	\dot{V}_{max}
Übergeordneter Regler	20 %	80 %	20 %	80 %
VAV-Kompaktregler	0 %	100 %	0 %	100 %

Führungssignal: Y_{zuluft} = Y_{abluft} = 35 %

Ergebnis: V

 $\dot{V}_{zuluft} = \dot{V}_{abluft} = 35 \%$

Einstellbeispiel A2

VVS-Differenzregelung, mit 20 % konstantem Zuluftvolumenstromüberschuss (Raumüberdruck)

	Zuluft		Abluft	
	\dot{V}_{min}	\dot{V}_{max}	\dot{V}_{min}	\dot{V}_{max}
Übergeordneter Regler	20 %	80 %	0 %	60 %
VAV-Kompaktregler	0 %	100 %	0 %	100 %

Führungssignal: Y_{zuluft} = 35 %, Y_{abluft} = Y_{zuluft} - 20 % = 15 %

Ergebnis: $\dot{V}_{zuluft} = 35 \%$, $\dot{V}_{abluft} = 15 \%$

Einstellbeispiel A3

VVS-Differenzregelung, mit 20 % konstantem Abluftvolumenstromüberschuss (Raumunterdruck)

	Zuluft		Abluft	
	\dot{V}_{min}	\dot{V}_{max}	\dot{V}_{min}	\dot{V}_{max}
Übergeordneter Regler	20 %	80 %	40 %	100 %
VAV-Kompaktregler	0 %	100 %	0 %	100 %

Führungssignal: $Y_{zuluft} = 35 \%$, $Y_{abluft} = Y_{zuluft} + 20 \% = 55 \%$

Ergebnis:

 $\dot{V}_{zuluft} = 35$ %, $\dot{V}_{abluft} = 55$ %

ührungssignal

120

20

5.3.3 Min-/Max-Regelung im VAV-Kompaktregler

Bei Einstellung des minimalen bzw. maximalen Luftvolumenstroms im VAV-Kompaktregler müssen zwingend $\dot{V}_{min} = 0 \%$ und $\dot{V}_{max} = 100 \%$ im übergeordneten Regler eingestellt sein. In dieser Einstellungsart sind die beiden Führungssignale vom übergeordneten Regler für den Zuluft- bzw. den Abluftregler gleich gross. Dies ermöglicht eine Zu/Abluftregelung mit einem Führungssignal.

Einstellbeispiel B1 VVS-Verhältnisregelung 1 : 1

	Zuluft		Abluft	
	\dot{V}_{min}	\dot{V}_{max}	\dot{V}_{min}	\dot{V}_{max}
Übergeordneter Regler	0 %	100 %	0 %	100 %
VAV-Kompaktregler	20 %	80 %	20 %	80 %

Führungssignal: $Y_{zuluft} = Y_{abluft} = 25 \%$

Ergebnis:

 $\dot{V}_{zuluft} = \dot{V}_{abluft} = 35 \%$

Einstellbeispiel B2

VVS-Differenzregelung, mit 20 % konstantem Zuluftvolumenstromüberschuss (Raumüberdruck)

	Zuluft		Abluft	
	\dot{V}_{min}	\dot{V}_{max}	\dot{V}_{min}	\dot{V}_{max}
Übergeordneter Regler	0 %	100 %	0 %	100 %
VAV-Kompaktregler	20 %	80 %	0 %	60 %

Führungssignal: $Y_{zuluft} = Y_{abluft} = 25 \%$

Ergebnis: $\dot{V}_{zuluft} = 35 \%$, $\dot{V}_{abluft} = 15 \%$

Einstellbeispiel B3

VVS-Differenzregelung, mit 20 % konstantem Abluftvolumenstromüberschuss (Raumunterdruck)

	Zuluft		Abluft	
	\dot{V}_{min}	\dot{V}_{max}	\dot{V}_{min}	\dot{V}_{max}
Übergeordneter Regler	0 %	100 %	0 %	100 %
VAV-Kompaktregler	20 %	80 %	40 %	100 %

Führungssignal: $Y_{zuluft} = Y_{abluft} = 25 \%$

Ergebnis: \dot{V}_{zuluft} = 35 %, \dot{V}_{abluft} = 55 %

5.3.4 Master/Slave-Betrieb

Um Zu- und Abluft in KNX LTE-Mode-Umgebungen (Synco 700 ab Serie C) zu regeln, ist ein Master/Slave-Betrieb erforderlich. In dieser Betriebsart ist das Istwert-Signal des Master-Reglers (Zuluft) das Führungssignal des Slave-Reglers (Abluft), vgl. auch Abschnitt **6.2.2**.

Einstellbeispiel C1

VVS-Verhältnisregelung 1 : 1

	Zuluft (Master)		Abluft (Slave)	
	\dot{V}_{min}	\dot{V}_{max}	\dot{V}_{min}	\dot{V}_{max}
Übergeordneter Regler	0 %	100 %	0 %	100 %
VAV-Kompaktregler	20 %	80 %	0 %	100 %

Führungssignal: Y_{master} = 25 %

Ergebnis: $\dot{V}_{master} = \dot{V}_{slave} = 35 \%$

Einstellbeispiel C2

VVS-Differenzregelung, mit 20 % konstantem Zuluftvolumenstromüberschuss (Raumüberdruck)

	Zuluft (Master)		Abluft (Slave)
	\dot{V}_{min}	\dot{V}_{max}	\dot{V}_{min}	\dot{V}_{max}
Übergeordneter Regler	0 %	100 %	0 %	100 %
VAV-Kompaktregler	20 %	80 %	-20 %	80 %

Führungssignal: Y_{master} = 25 %

Ergebnis: $\dot{V}_{master} = 35 \%$, $\dot{V}_{slave} = 15 \%$

Einstellbeispiel C3

VVS-Differenzregelung, mit 20 % konstantem Abluftvolumenstromüberschuss (Raumunterdruck)

	Zuluft (Master)		Abluft (Slave)
	\dot{V}_{min}	\dot{V}_{max}	\dot{V}_{min}	\dot{V}_{max}
Übergeordneter Regler	0 %	100 %	0 %	100 %
VAV-Kompaktregler	20 %	80 %	20 %	120 %

Führungssignal: Y_{master} = 25 %

Ergebnis: $\dot{V}_{master} = 35 \%, \dot{V}_{slave} = 55 \%$

Projektierung und Inbetriebnahme 6

Grundlegendes 6.1

6.1.1 Systemumgebungen

Voraussetzungen

Für die Abschnitte Projektierung und Inbetriebnahme werden sichere Kenntnisse über KNX-Netzwerke und je nach Systemumgebung ausreichende Kenntnisse im Umgang mit ETS, ACS790 oder Desigo ABT Site vorausgesetzt.

Systemumgebungen und zugehörige Tools:

System- / Netzwerkumgebung	Projektierungs- und Inbetriebnahme-Tool(s)	Weitere Informationen
Desigo PL-Link	Desigo ABT, SSA	Desigo XWP (ABT-Onlinehilfe)
KNX LTE-Mode	Synco ACS790	Basisdokumentation P3127 und Datenblatt N3127
KNX S-Mode	ETS4, ETS5	Dokumentation Y3110

- Um einen PC mit USB-Schnittstelle mit einem KNX-Netzwerk zu verbinden, ist ein Schnittstellenkonverter wie z.B. OCI700 erforderlich (enthalten in Servicetool OCI700.1),
- Möglichkeiten, über eine IP-Schnittstelle auf das KNX-Netzwerk zuzugreifen bieten sich z.B. mit der PXC3.. Automationsstation,
- die VAV-Kompaktregler werden mit der Default-Adresse 0.2.255 ausgeliefert,
- aufgrund der separaten AC 24 V-Speisung belasten die VAV-Kompaktregler den KNX-Bus nur mit 5 mA,
- Desigo PL-Link-Systeme unterstützen keine Linienkoppler.

6.1.2 Dokumentation von Projektierung und Inbetriebnahme

Es wird empfohlen, alle Planungsdaten und Einstellungen derart zu dokumentieren und abzulegen, dass sie auch nach längerer Zeit und Wechsel von Zuständigkeiten ohne grössere Schwierigkeiten wieder verwendet werden können. Insbesondere bei berechneten oder speziell angepassten Einstellungen sollte dies eindeutig protokolliert werden.

6.1.3 Adressaufkleber

Die VAV-Kompaktregler werden mit abziehbaren Adressaufklebern ausgeliefert, die die eineindeutige KNX-ID in alphanumerischer und Barcode-Darstellungen enthalten.

Der Adressaufkleber kann während der Montage vom Gerät abgezogen werden und auf einen Gebäudeplan o.ä. aufgeklebt werden. Der Gebäudeplan enthält damit eine Zuordnung von KNX-IDs und physischem Einbauort. Hiermit können nachfolgende Schritte erheblich vereinfacht werden. Dieses Vorgehen stellt zudem die Grundlage für den empfohlenen Projektierungs- und Inbetriebnahmeablauf dar. Sollte der Aufkleber verloren gehen, so sind die Angaben auch auf das Gehäuse aufgedruckt.

Protokollierung von Projektierung und Inbetriebnahme

Vereinfachung von Projektierung und Inbetriebnahme

6.2 Projektierung

6.2.1 Projektierung mit KNX S-Mode

Zertifiziertes KNX- Produkt	Die VAV-Ko Inbetriebnał Projektierun	Die VAV-Kompaktregler sind zertifizierte KNX-Geräte. Für Projektierung und Inbetriebnahme wird die ETS-Software verwendet [7]. Zur Ausführung der Projektierung finden sich in Kapitel 9 die Parameter und S-Mode Datenpunkte.				
KNX-Produktdaten	Für KNX S- von der Siel importiert w	Mode Projektierung müs mens-Website herunterg erden. Die Produktdater	sen die Produktdaten (jeladen und in den ETS n finden sich auf <u>www.si</u>	*.vd5 oder *.knxprod) Gerätekatalog <u>emens.com/hvac-td</u> .		
	6.2.2 P	rojektierung mit K	NX LTE-Mode / Syr	າດວ 700		
	Die Projektie Tool ACS79	erung im LTE-Mode mit 0 0 [8].	Geräten der Synco 700-F	Familie erfolgt mit dem		
Empfehlung: Adress- aufkleber sammeln	Während de den Geräter KNX-IDs un	er Montage der VAV-Kon n abgezogen und auf eir d physischen Einbauort	npaktregler können die / nen Gebäudeplan o.ä. a aufeinander abzubilder	Adressaufkleber von ufgeklebt werden, um ı.		
	Nach Monta Geräteliste KNX-IDs eir zugewiesen Ein alternati	ge/Installation werden d erkannt. In der Gerätelis nfach identifiziert und die werden. Hiermit ist eine ves Vorgehen wird in Ab	lie Geräte nach Aktualis te können die Geräte a e physikalischen Adress e sehr aufwandarme Inb oschnitt 6.3.3 beschrieb	ieren der ACS790- nhand der gesammelten en gemäss Planung etriebnahme möglich. en.		
Einstellungen im Master/Slave-Betrieb	Anlagen mit 700 (ab Ser Abschnitt 5. die in Synco	Zu- und Abluftregelung ie C) müssen als Master 3.4). Alle Geräte müsser 700-Systemen auf "8" 2	in KNX LTE-Mode-Umg r/Slave-Konfiguration re n sich in der selben Luft zu setzen ist.	gebungen mit Synco alisiert werden (vgl. verteilzone befinden,		
	Der minima auf 0 % und als Master u Kompaktreg muss der Lu zugeordnet	Der minimale und maximale Volumenstrom des Slave-VAV-Kompaktreglers muss auf 0 % und 100 % eingestellt werden. Die VAV-Kompaktregler müssen in ACS79 als Master und Slave eingestellt werden (in "Anlagenengineering" je VAV- Kompaktregler unter "Betriebseinstellungen"). Der Master-VAV-Kompaktregler muss der Luftart "Zuluft" und der Slave-VAV-Kompaktregler der Luftart "Abluft" zugeordnet sein.				
	Parameter	RDG400KN	Zuluftregler (Master)	Abluftregler (Slave)		
	Minimaler und maximaler Luftvolumenstrom	Vmin = $x_1 %$ Vmax = $x_2 %$ x_1, x_2 = Anlagenwerte	Vmin = $y_1 %$ Vmax = $y_2 %$ y_1, y_2 = Anlagenwerte	Vmin = 0 % Vmax = 100 %		
	Luftverteilzone	8	8	8		
	Master/Slave	-	Master	Slave		

Zuluft

Abluft

Luftart

-

6.2.3 Projektierung mit Desigo PL-Link

Die Projektierung auf Systemebene erfolgt mit der Desigo XWP-Komponente ABT – (Automated Building Tool). Mit dem Webserver-basierten Tool SSA (Setup and Service Assistant) können während der Inbetriebnahme Datenpunkttests durchgeführt werden.

Plug&playIm Fall von Desigo PL-Link Systemen kann bei entsprechender Projektierung dieInbetriebnahmeInbetriebnahme nach dem Plug&Play-Prinzip erfolgen, d.h. nach Aufschalten der
Spannungsversorgung läuft die Inbetriebnahme weitgehend automatisch ab.
Hierzu muss der nachfolgend beschrieben Ablauf eingehalten werden. Grundlage
dieses Ablaufs ist die richtige Vorbereitung der VAV-fähigen Automationsstation
(z.B. PXC3..).

Der folgende (idealisierte) Projektierungsablauf stellt eine Empfehlung dar, um die Vorteile der VAV-Kompaktregler bzw. der PL-Link-Funktionalität zu nutzen.

- 1. Der **Planungsingenieur** (Design Engineer, DE)plant das System mit dem Tool **Desigo XWP (ABT)**. Die Planungsdaten für das gesamte Projekt werden auf einem Engineering Data Server abgelegt.
- In Folge der Planung gehen entsprechende Bestellungen u.a. an den VAV-Box OEM, der VAV-Kompaktregler vom Distributions-Center erhält. Der OEM stellt die VAV-Boxen her und nimmt dabei die Anpassung der VAV-Kompaktregler an die VAV-Box vor (v.a. durch den Parameter Vn, vgl. Abschnitt 2.6). Die VAV-Boxen werden dann zum Einbauort geliefert.
- 3. Der **Elektroinstallateur** (Electrical Installer, EI) baut die VAV-Boxen ein, entfernt die **Adressaufkleber** von den G..B und klebt sie auf einen Grundriss oder gleichwertigen Plan auf. Dieser Grundriss wird dann zurück an den Planungsingenieur gesandt, der damit die Planungsdaten vervollständigt (Zuordnung der VAV-Kompaktregler gemäss Planung zu den erfassten tatsächlichen Adressen in Desigo XWP (ABT)).
- 4. Der **Planungsingenieur** kann nun die **Automationsstation** (z.B. PXC3..) offline in **Desigo XWP (ABT)** vorkonfigurieren: Nach Hinzufügen der erforderlichen Anzahl an VAV-Kompaktreglern zum PL-Link-Bus einer Automationsstation kann im Konfigurationsdialog der einzelnen VAV-Kompaktregler die KNX-ID entweder alphanumerisch eingegeben oder, falls unterstützt, über einen Barcode-Scanner erfasst werden. Diese Konfiguration wird dann zu einer pack&go-Datei kompiliert, um am Einbauort in die vorgesehene Automationsstation geladen zu werden.
- 5. Der **Planungsingenieur** stellt dem **Elektroinstallateur** diese pack&go-Datei mit den Planungsdaten zu. Der El lädt diese Datei in die jeweilige Automationsstation und führt ein erstes Testing mit dem SSA-Tool durch.
- 6. Der **Inbetriebnahmeingenieur** (Commissioning Engineer, CE) verwendet dann diese Planungsdaten und **Desigo XWP (ABT)**, um die Inbetriebnahme abzuschliessen.

Projektierungsablauf

Empfohlener

6.3 Inbetriebnahme

6.3.1 Voraussetzungen

Inbetriebnahme-Voraussetzungen Art und Anzahl der einstellbaren Parameter können je nach Umgebung variieren. Vor der Inbetriebnahme müssen alle Geräte entsprechend der jeweiligen Montageanleitung (Für VAV-Kompaktregler: M3547) montiert und an die Spannungsversorgung und an die Busverkabelung angeschlossen werden. Die Spannungsversorgungs- und Busverkabelung müssen getestet werden.

Es wird empfohlen, die Inbetriebnahme Linie für Linie durchzuführen.

Betriebszustand und Anzeige

Nach dem Aufstarten kann das Gerät folgende Zustände einnehmen:

Zustand / Ziel	Aktion des Benutzers	Reaktion des Geräts (LED)			
In allen Systemumge	In allen Systemumgebungen verfügbare Funktionalität				
Power-up / Gerät startet	Spannungsversorgung herstellen	LED leuchtet orange und erlischt, wenn Power-up abgeschlossen ist			
Gerät funktioniert ordnungsgemäss	keine	LED ist dunkel			
Gerät in Adressier-/ Programmiermodus versetzen	Drucktaster kurz (<0,5 s) betätigen	LED leuchtet rot (ohne Zeitbegrenzung)			
Gerät in Auslieferungszustand zurücksetzen	Drucktaster lange (>20 s) betätigen	LED blinkt orange bis Abschluss des Vorgangs			
Mit PL-Link zusätzlic	h verfügbare Funktionali	tät			
Verbindungstest durchführen	Drucktaster mittellang (>2 s und <20 s) betätigen	 LED blinkt orange. Danach (jeweils für 60 s oder vorheriges Abbrechen durch Knopfdruck): a) LED leuchtet grün → Verbindungstest erfolgreich b) LED blinkt rot in 1s – Intervall → Verbindungstest fehlgeschlagen 			
Verbindungstest nach Abschluss quittieren	Drucktaster kurz (<0,5 s) betätigen	LED erlischt			

KNX S-Mode Inbetriebnahme

6.3.2 Inbetriebnahme mit KNX S-Mode

Für KNX S-Mode kommen die üblichen Prozeduren für ETS3 oder ETS4 zum Einsatz. Die Benutzerschnittstelle (HMI) entspricht dem KNX-Standard. Ein kurzer Tastendruck versetzt das Gerät in den Programmiermodus (vgl. auch Abschnitt **2.4**).

6.3.3 Inbetriebnahme mit KNX LTE-Mode

VAV-Kompaktregler, KNX LTE-Mode Regler und Bediengeräte sind mit der Spannungsversorgung verbunden. Die ACS790-Geräteliste muss zuerst aktualisiert, dann geöffnet werden.

→ Variante 1 (empfohlen)

- 1. Auswählen eines VAV-Kompaktreglers in der Geräteliste über die KNX-ID (KNX-IDs müssen während der Montage gesammelt werden),
- 2. Doppelklick in dieser Zeile öffnet Dialog "Adressvergabe",
- oder
- → Variante 2
 - Einen VAV-Kompaktregler in Adressiermodus versetzen (Drucktaster am Gerät kurz drücken → LED leuchtet rot),
 - In der ACS790 Geräteliste mit Schaltfläche "Adressiermodus…" das dann aktive Gerät auswählen → im Fenster "Adressvergabe" eine physikalische Adresse eingeben → "Schreiben" klicken.
- → Eingabe einer physikalischen Adresse und Kurzbeschreibung für den ausgewählten VAV-Kompaktregler
- → Schliessen des Dialogs "Adressvergabe" durch Klick auf "Schreiben…"
- → Wiederholung dieser Schritte f
 ür alle in Betrieb zu nehmenden VAV-Kompaktregler

Danach: Weitere Konfiguration mit ACS790

6.3.4 Inbetriebnahme mit PL-Link

PL-Link Inbetriebnahme Mehrere VAV-Kompaktregler können gleichzeitig oder nacheinander an die Spannungsversorgung angeschlossen werden. Um eine Plug&Play-Inbetriebnahme zu ermöglichen, muss die PL-Link Automationsstation entsprechend dem empfohlenen Projektierungsablauf in Abschnitt **6.2.3**. eingerichtet sein.

Die PL-Link Automationsstation ist aufgestartet und mit dem Bus verbunden; die VAV-Kompaktregler sind von der Spannungsversorgung getrennt.

- → Initiierung durch Verbinden aller VAV-Kompaktregler mit der Spannungsversorgung (gleichzeitig oder Gerät für Gerät)
- → PL-Link Automationsstation und VAV-Kompaktregler führen Anmeldung und Adresszuweisung aus. Die Konfigurationsdaten werden vom Regler an die VAV-Kompaktregler übertragen
- \rightarrow Optional: Verbindungstest durch mittellangen Tastendruck (>2 s und <20 s)

KNX LTE-Mode Inbetriebnahme

	7 Sicherheit und EMV-Optimierung					
	7.1 Hinweise zur Sicherheit					
STOP Bitte beachten Sie diese Hinweise	In diesem Kapitel werden die allgemeinen Vorschriften und Vorschriften für Netz- und Betriebsspannung behandelt. Es enthält wichtige Informationen für Ihre Sicherheit und für die Sicherheit der gesamten Anlage.					
A Sicherheitshinweis	Das nebenstehend gezeigte Warndreieck bedeutet in dieser Druckschrift, dass die darunter aufgelisteten Vorschriften und Hinweise zwingend einzuhalten sind. Andernfalls ist die Sicherheit von Personen und Sachen gefährdet.					
Allgemeine Vorschriften	Beachten Sie folgende allgemeine Vorschriften bei der Projektierung und Ausführung:					
	Elektrizitäts- und Starkstromverordnungen des jeweiligen Landes					
	Andere einschlägige Ländervorschriften					
	Hausinstallationsvorschriften des jeweiligen Landes					
	Vorschriften des die Ehergie liefernden werkes Schemate Kabellisten Dispesitienen Spezifikationen und Aperdnungen des					
	 Schemata, Kabellisten, Dispositionen, Spezifikationen und Anordnungen des Kunden oder des beauftragten Ingenieurbüros 					
	Vorschriften Dritter wie z.B. von Generalunternehmern oder Bauherren					
Sicherheit	Die elektrische Sicherheit bei Gebäudeautomationssystemen von Siemens beruht im Wesentlichen auf der Verwendung von Kleinspannung mit sicherer Trennung gegenüber Netzspannung.					
SELV, PELV	Abhängig von der Erdung dieser Kleinspannung ergibt sich eine Anwendung nach SELV oder PELV gemäss HD 384 "Elektrische Anlagen von Gebäuden":					
	 Ungeerdet = Sicherheitskleinspannung SELV (Safety Extra Low Voltage) 					
	• Geerdet = Schutzkleinspannung PELV (Protection by Extra Low Voltage)					
Erdung von	Bezüglich der Erdung von G0 sind folgende Punkte zu beachten:					
G0 (Systemnull)	Grundsätzlich ist sowohl Erdung als auch Nicht-Erdung von G0 der Betriebsspannung AC 24 V zulässig. Massgebend sind die örtlichen Vorschriften und Gepflogenheiten.					
	Eine Erdung kann auch aus funktionellen Gründen erforderlich oder unzulässig sein.					
Empfehlung zur Erdung von G0	AC 24 V Systeme generell erden, sofern dies nicht den Angaben des Herstellers widerspricht.					
	Zur Vermeidung von Erdschlaufen dürfen Systeme mit PELV nur an einer Stelle im System mit Erde verbunden werden, meistens beim Trafo, wenn nichts anderes angegeben wird.					

Bezüglich dieser Betriebsspannungen gelten diese Vorschriften:

	Vorschrift				
Betriebsspannung AC 24 V	Die Betriebsspannung muss den Anforderungen für SELV oder PELV genügen:				
	 Zulässige Abweichung der Nennspannung AC 24 V an den Antrieben: +/–20 % 				
Spezifikation für die Trafos AC 24 V	 Sicherheitstrafos nach EN 61558, mit doppelter Isolation, ausgelegt f ür 100 % Einschaltdauer zur Versorgung von SELV oder PELV-Stromkreisen. 				
	 Die erforderliche Leistung des Transformators wird bestimmt durch Addieren der Leistungsaufnahme in VA aller verwendeten Antriebe. 				
	 Die dem Trafo entnommene Leistung sollte aus Gründen der Effizienz (Wirkungsgrad) mindestens 50 % der Nennlast betragen. 				
	 Die Nennleistung des Trafos muss mindestens 25 VA betragen. Bei kleinerem Trafo wird das Verhältnis von Leerlaufspannung zur Spannung bei Volllast ungünstig (> + 20 %). 				
Absicherung der Betriebsspannung AC 24 V	 Trafos sekundärseitig: entsprechend der effektiven Belastung aller angeschlossenen Geräte 				
	 Leiter G (Systempotential) muss immer abgesichert werden. 				
	 Wo vorgeschrieben, zusätzlich der Leiter G0 (Systemnull). 				

7.2 Gerätespezifische Vorschriften

A Gerätesicherheit	Die gerätetechnische Sicherheit wird u. a. gewährleistet durch Versorgung mit Kleinspannung AC 24 V nach SELV oder PELV.				
Elektrisches Parallelschalten	Elektrisches Parallelschalten der VAV-Kompaktregler GDB181 auch mit GLB181 ist unter der Bedingung zulässig, dass die Betriebsspannung innerhalb der geforderten Toleranz liegt. Spannungsabfälle der Zuleitungen sind zu berücksichtigen.				
KNX-Busspeisung	Bei der Planung und Installation von Raumreglern und Feldgeräten mit KNX- Busanschluss sind die zulässigen Leitungslängen und Topologien zu beachten. Es ist eine ausreichende, mit dem KNX-Standard konforme Busspeisung zu gewährleisten.				
Hinweis	Die Geräte dürfen nicht mechanisch zusammen gekoppelt werden.				
Warnung, Wartung	Der Antrieb darf nicht geöffnet werden. Das Gerät ist wartungsfrei. Instandstellungsarbeiten dürfen nur durch den Hersteller durchgeführt werden.				

7.3 Hinweise zur EMV-Optimierung

Kabelverlegung in einem Kanal	Es ist darauf zu achten, dass stark störende Kabel von den möglichen Störopfern getrennt werden.				
Kabelarten	Störende Kabel: Motorenkabel, speziell von Umrichtern gespeiste Motoren, Energiekabel				
	 Mögliche Störopfer: Steuerkabel, Kleinspannungskabel, Interface-Kabel, LAN-Kabel, digitale und analoge Signalkabel 				
Trennung der Kabel	 Beide Kabelarten können im gleichen Kabelkanal, jedoch in getrennten Kammern verlegt werden. 				
	 Steht kein dreiseitig geschlossener Kanal mit Trennwand zur Verfügung, müssen die störenden Kabel von den andern durch eine minimale Distanz von 150 mm getrennt verlegt werden oder in separaten Kanälen verlegt werden. 				
	 Kreuzungen stark störender Kabel mit möglichen Störopfern sollten rechtwinklig sein. 				
	 Wenn in Ausnahmefällen Signal- und störende Leistungskabel parallel geführt werden, ist die Gefahr der Einstreuung gross. 				
Ungeschirmte Kabel	Wir empfehlen generell ungeschirmte Kabel zu verwenden. Bei der Auswahl ungeschirmter Kabel sind die Installationsempfehlungen des Herstellers zu befolgen. Im Allgemeinen haben paarweise verdrillte, ungeschirmte Kabel für gebäudetechnische Anwendungen (inkl. Datenanwendungen) ausreichende EMV Eigenschaften und den Vorteil, dass keine Kopplung zur umgebenden Erde berücksichtigt werden muss.				

Speisung AC24 V	Betriebsspannung / Frequenz	AC 24 V ± 20 % oder AC 24 V class 2 (US) / 50/60 Hz			
(SELV/PELV)					
G (Ader 1 "rot") und	Leistungsaufnahme bei				
G0 (Ader 2 "schwarz")	Haltezustand	1 VA/0,5 W			
	Antrieb dreht	3 VA/2,5 W			
Stellantrieb	Nenndrehmoment	5 Nm (GDB) / 10 Nm (GLB)			
	maximales Drehmoment	Nm (GDB) / <14 Nm</td <td colspan="3"><7 Nm (GDB) / <14 Nm (GLB)</td>	<7 Nm (GDB) / <14 Nm (GLB)		
	Nenndrenwinkei / maximaler Drenwinkei	90 / 95 ±2			
	Lauizeit für Nenharenwinkei 90	150 S (50 HZ) / 125 S (60 HZ)			
		Unizeigersinn / Gegen-			
KNX-BUS	Anschlusstyp	KNX, 1P1-256 (el. ISOli6	ert)		
Konfigurations und		5 IIIA			
Wartungsschnittstelle	Buchsenleiste	7-polia Raster 2.0 mm			
	Kahellänge	0.9 m			
Anseniusskaber	Adem und Ouerschnitt	$2 \times 0.75 \text{ mm}^2$			
Δ	Schutzart nach EN 60529 (Montagehinweise beachten)	IP54			
Gehäuseschutzart und					
-Schutzklasse	Isolationsschutzklasse nach EN 60730				
Umweltbedingungen	Betrieb / Transport	IEC 721-3-3 / IEC 721-3	3-2		
		050 °C / –2570 °C			
	Feuchte (onne Betauung)	<95 % r.F. / <95 % r.F.			
Normen und Richtlinien	Produktenorm Automatische elektrische Regel- und Steuergeräte für den Hausgebrauch u. ähnliche Anwendungen	EN 60730-2-14 (Wirkungsweise Typ 1)			
	Elektromagnetische Verträglichkeit (Einsatzbereich)	Für Wohn-, Gewerbe u	nd Industrieumgebung		
	EU Konformität (CE)	GDB181.1E/KN	GLB181.1E/KN		
		A5W00003842 1)	A5W00000176 ¹⁾		
	RCM Konformität	GDB181.1E/KN	GLB181.1E/KN		
		A5W00003843 1)	A5W00000177 ¹⁾		
Umweltverträglichkeit	Die Produktumweltdeklaration CM2E4634E ¹⁾ enthält Date Bewertung (RoHS-Konformität, stoffliche Zusammensetzu	n zur umweltverträglichen Gestaltung und ing, Verpackung, Umweltnutzung und Entsorgung			
Abmessungen	Β x H x T	71 x 158 x 61 mm			
Verwendbare Klappenachsen	Achsenform				
	rund	816 mm			
	rund, mit Einlegeteil	810 mm			
	4-kant	612,8 mm			
	min. Achslänge	30 mm			
	max. Achshärte	< 300 HV			
Gewicht	ohne Verpackung	0,6 kg			
Volumenstromregler	3-Punktregler mit Hysterese	20 120 %			
	V _{max} , einstellbar (Auflösung 1 % / Auslieferung 100 %)	20120 %			
	V _{min} , einstellbar (Auflösung 1 % / Auslieferung 0 %)	-20100 %			
	V _n , einstellbar (Auflösung 0,01 / Auslieferung 1,00)	13,16			
	\dot{V}_n = 1 $ riangleq$ 300 Pa bei nominalem Luftvolumenstrom				
	\dot{V}_n = 3,16 $ m \triangleq$ 30 Pa bei nominalem Luftvolumenstrom				
Differenzdrucksensor	Verbindungsschläuche (Innendurchmesser)	38 mm			
	Messbereich	0500 Pa			
	Anwendungsbereich	0300 Pa			
	Genauigkeit bei 23 °C, 966 mbar und beliebiger Einbaulag	e			
	Nullpunkt	± 0,2 Pa			
	Amplitude	± 4,5 % des Messwerte	s		
	Drift	± 0,1 Pa / Jahr			
	Max. zulässiger Betriebsdruck	3000 Pa			
	Max. zulässige einseitige Überlastung	3000 Pa			

Technische Daten

8

¹⁾ Die Dokumente können unter <u>http://www.siemens.com/bt/download</u> bezogen werden

9 Datenpunkte und Funktionsbeschreibung

9.1 Konfigurationstool-Parameter

Parameter	Bereich	Beschreibung	Werksein- stellung	
Sollwert	0100%	Sollwert zum VAV-Regler, <i>relativ zum</i> <i>Vmin/Vmax-Bereich</i> 0% → Vmin / 100% → Vmax	N/A	
Istwert Position	0100%	Klappenstellung, abh. von der Einstellung für adaptive Positionierung	N/A	
Istwert Vol'strom (abs.)	065'535 m ³ /h	Istwert Vol'strom in m ³ /h oder l/s	N/A	
Istwert Vol'strom (%Vnom)	0100%	Istwert Vol'strom in % relativ zu Vnom	N/A	
Istwert Diff'druck (abs.)	0300 Pa	Istwert Diff'druck (Absolutwert)	N/A	
Zwangssteuerung	Offen / Zu / Stop / Min / Max	Zwangssteuerung für Wartungs- und Testzwecke	N/A	
Betriebsart	VAV / POS	VAV / POS VAV = Sollwert regelt Volumenstrom 0100% POS = Sollwert regelt Klappenstellung 0100%		
Öffnungsrichtung	UZS / GUZS	Öffnungsrichtung der Luftklappe	UZS	
Adaptive Positionierung	Absolut / Adaptiv	Adaption der Stellungsrückmeldung 0100% an den tatsächlichen (falls mech. beschränkt) Öffnungsbereich 1) ¹⁾ Aus = Keine Adaption / Ein = Adaption aktiv	Absolut	
Vmin	-20100%	Minimaler Luftvolumenstrom, relativ zu Vnom	0 %	
Vmax	20120%	Maximaler Luftvolumenstrom, relativ zu Vnom	100 %	
Vnom	065'535 m ³ /h	Nominaler Volumenstrom ²⁾	100 m³/h	
Vn (Koeffizient)	13.16	Kennwert für Luftvolumenstrom bei nominalem Differenzdruck; vom VAV-Box-OEM eingestellt	1.00	
dpnom	30300 Pa	Nominaler Differenzdruck, korrespondiert m. Vn	300 Pa	
Höhe ü.M.	05000m, in 500m Schritten (AST20: 100m)	Korrekturfaktor für den dp-Sensor (einzustellen auf den der tats. Höhe ü. M. nächsten n*500m Wert)	500 Meter	
Einheit Vol'strom	m³/h / l/s	Einheit in der der Volumenstrom dargestellt wird	m³/h	
Einheit Vmin/Vmax	%, m³/h or l/s	Einheit in der Vmin/Vmax eingegeben werden	%	

¹⁾ Adaptive Positionierung darf nicht eingeschaltet werden, während der Antrieb sich in einer mech. Blockade befindet.

²⁾ Wert wird nur zur Anzeige verwendet, nicht zur Regelung

Hinweis

Einige Parameter sind ebenfalls als ETS-Parameters verfügbar. In ETS gesetzte Parameter (Vorgabewerte beachten!) überschreiben dabei zuvor gemachte Einstellungen.

9.2 Inbetriebnahme Tool-Parameter

9.2.1 ETS Parameter

Parameter	Wertebereich	Beschreibung	Werkseinst.					
Parameterset "Standard"								
Betriebsart	VAV / POS	VAV: Sollwert = Volumenstrom 0100% POS: Sollwert = Klappenposition 0100%	VAV					
Adaptive Positionierung	Ein / Aus	Adaption der Stellungsrückmeldung 0100% an den tatsächlichen (falls mech. beschränkt) Öffnungsbereich ¹⁾	Aus					
Höhe ü. M.	0…5000m in 500m Schritten	Korrekturfaktor für den dp-Sensor (einzustellen auf den der tats. Höhe ü. M. nächsten n*500m Wert)	500 m					
Wartezeit	0…60 min 0 min = ausgeschaltet	Wartezeit zum Feststellen eines Kommunikationsausfalls. Wenn ausgeschal- tet, regelt der VAV Kompaktregler auf den zuletzt empfangenen Sollwert, bis ein neuer gültiger Sollwert empfangen wird.	30 min.					
Ersatzbetrieb	Ersatzwert Letzte bekannte Position	 Verhalten bei Kommunikationsausfall, d.h. wenn innerhalb der Wartezeit kein gültiger Sollwert empfangen wurde. Ersatzwert: Antrieb fährt Vorgabe-Pos. an Letzte bekannte Position: Antrieb hält aktuelle Position ohne Vol'stromregelung 	Ersatzwert					
Ersatzwert Klappenposition	0100%	Klappenposition, die im Fall eines Kommunikationsausfalls angefahren wird	50%					
Parameterset "Erwe	eitert"							
Hysterese (COV) Volumenstrom	120%	Schwellwert für den rel. Volumenstrom. Wert- änderungen darunter werden nicht übertragen	1%					
Min. Repetitionszeit Volumenstrom	10900 s	Min. Wartezeit bis eine Wertänderung oberhalb des Schwellwertes übertragen wird	10 s					
Hysterese (COV) Klappenstellung	120%	Schwellwert für die rel. Klappenstellung. Wert- änderungen darunter werden nicht übertragen	1%					
Min. Repetitionszeit Klappenstellung	10900 s	Minimale Wartezeit bis eine Wertänderung oberhalb des Schwellwertes übertragen wird	10 s					
Vorrang-Position 1	0100%	Klappenstellung, die angefahren wird, wenn das zugeordnete Auslöser-Gruppenobjekt aktiviert wird (mit Vorrang-Priorität)	0%					
Vorrang-Position 2	0100%	Klappenstellung, die angefahren wird, wenn das zugeordnete Auslöser-Gruppenobjekt aktiviert wird (mit Vorrang-Priorität)	100%					
Vnom schreiben	Ein / Aus	Falls aktiv, ist das Gruppenobjekt für Vnom schreibbar (OEM-Parameterschutz vor- handen). Andernfalls ist der Wert Nur-Lesen.	Aus					
Öffnungsrichtung schreiben	Ein / Aus	Ein: Gruppenobjekt für die Öffnungsrichtung kann schreibbar gemacht werde (OEM- Parameterschutz vorhanden).	Aus					

9.2.2 Zus. ACS790 Parameter

Parameter	Range	Description	Werkseinst.
Luftart	Outside air, Primary supply air, Supply air, Extract air	Luftart gem. EN13779:2007	Outside air
Master/Slave	Autonom, Master, Slave	Im Master/Slave-Betrieb wird das Ausgangssignal des Zuluft-VAV- Reglers wird als Eingangssignal des Abluft-VAV-Reglers verwendet.	Autonom

9.3 S-Mode Gruppenobjekte

9.3.1 Auflistung der Gruppenobjekte

Nr.	Nr. Name in ETS Objekt-			Flags				Datenpunkttyp KNX				Wertebereich
	Funktion		С	R	w	т	U	ID	DPT_Name	Format	Unit	
1	Störungsinformation	Senden	1	1	0	1	0	219.001	_AlarmInfo	6 Byte		[0255] = Log Nr. [02] = Alarmpriorität [014] = Application area [04] = Fehlerklasse [07] = Attribute [07] = Alarmstatus
2	Störungszustand	Senden	1	1	0	1	0	1.005	_Alarm	1 bit		0 = No alarm 1 = Alarm
3	Störungsübertragung	Empfangen	1	0	1	0	1	1.003	_Enable	1 bit		0 = Abschalten 1 = Freigeben
4	Sollwert	Empfangen	1	1	1	0	1	5.001	_Scaling	1 Byte	%	0100%
5	Klappenposition	Senden	1	1	0	1	0	5.001	_ Scaling	1 Byte	%	0100%
6	Volumenstrom	Senden	1	1	0	1	0	5.001	_ Scaling	1 Byte	%	0100%
	(relativ)	Senden	1	1	0	1	0	8.010	_Percent_V16	2 Bytes	%	-327.68327.67%
		Senden	1	1	0	1	0	5.004	_ Percent_U8	1 Byte	%	0255%
7	Volumenstrom	Senden	1	1	0	1	0	9.009	_Value_Airflow	2 Bytes	m³/h	-670 760670 760 m3/h
		Senden	1	1	0	1	0	14.077	_ Volume_Flux	4 Bytes	m³/s	0(2 ³² -1)
8	Störung	Senden	1	1	0	1	0	1.005	_Alarm	1 bit		0 = No alarm 1 = Alarm
9	Übersteuerung	Senden	1	1	0	1	0	1.002	_Bool	1 bit		0 = Falsch 1 = Wahr
10	Vorrang-Position 1	Empfangen	1	1	1	0	1	1.003	_Enable	1 bit		0 = Abschalten 1 = Freigeben
11	Vorrang-Position 2	Empfangen	1	1	1	0	1	1.003	_Enable	1 bit		0 = Abschalten 1 = Freigeben
12	Einregelbetrieb	Empfangen	1	1	1	0	0	1.003	_Enable	1 bit		0 = Abschalten 1 = Freigeben
13	Vmin	Empfangen	1	1	1	0	1	8.010	_Percent_V16	2 Bytes	%	-327.68327.67%
14	Vmax	Empfangen	1	1	1	0	1	8.010	_Percent_V16	2 Bytes	%	-327.68327.67%
15	Vnom	Nur lesen	1	1	0	0	0	9.009	_Value_Airflow	2 Bytes	m3/h	-670 760670 760 m3/h
16	Öffnungsrichtung	Nur lesen	1	1	0	0	0	1.012	_Invert	1 bit		0 = Not Inverted 1 = Inverted
17	Differenzdruck 2)	Nur lesen	1	1	0	0	0	9.006	_Value_Pres	2 Bytes	Pa	0670 760 Pa
		Nur lesen	1	1	0	0	0	14.058	_Value_Pressure	4 Bytes	Pa	0(2 ³² -1)
18	Koeffizient	Nur lesen	1	1	0	0	0	14.*	4-Byte Float	4 Bytes		03.16
19	OEM-Reset	Empfangen	1	0	1	0	0	1.017	_Trigger	1 bit		0, 1 = Trigger

¹⁾ Für einige Gruppenobjekte können im ETS alternative Datentypen (DPT) eingestellt werden. Der erste Eintrag in der Tabelle markiert jeweils die Ausliefereinstellung.

9.3.2 Beschreibung der Gruppenobjekte

Wenn das Gruppenobjekt #3 "Störungsübertragung" auf "Ein" gesetzt wurde, können die folgenden Fehler übertragen werden, wenn sie auftreten. In diesem Fall ändert sich der Wert des Gruppenobjekt #2 auf "Alarm".

	Fehler	Gruppenobj. #1 *)	Beschreibung	Lösung					
	Gerät blockiert	XX 00 0A 03 0C 05	Die Zielposition kann wegen einer mechanischen Blockade nicht erreicht werden.	Blockade entfernen (visu- elle Inspektion erforderlich) oder Öffnungsrichtung korrigieren, falls falsch. Danach adaptive Positio- nierung einschalten, falls die mechanischen An- schläge beabsichtigt sind.					
	Ersatzbetrieb aktiv	XX 01 01 02 0C 05	Antrieb ist im Ersatzbetrieb (vgl. zugeordnete Parametereinstellungen)	Antrieb verlässt Ersatz- betrieb, wenn wieder ein Sollwert empfangen wird.					
	Druckmess- Schläuche vertauscht	XX 01 0A 01 0C 05	Drucksensor misst den niedrigeren Druck am mit "+" markierten Anschluss.	Anschluss-Schläuche korrekt anschliessen.					
	Drucksensor Fehlfunktion	XX 01 0A 01 0C 05	Interne Kommunikation mit Drucksensor gestört (200 ms Timeout)	Anschluss prüfen und neu starten, oder austauschen.					
	Betriebsstunden- Warnung	XX 01 0A 04 0C 05	Erscheint nach einer kum. Motorlaufzeit von 365 Tagen	Gerät und Regelkreis- einstellungen prüfen.					
	*) "XX" steht für ei	nen Zähler, der mit "0	0" beginnt und mit jedem Eintre	ten um 1 erhöht wird.					
Störungszustand	Zeigt an, ob der Ant Gruppenobjekt #1 a	rieb im Störungszusta lusgelesen werden.	nd ist. Falls ja, können genaue	re Angaben mit dem					
Störungsübertragung	Aktivieren / Deaktivi deaktiviert, so dass	Aktivieren / Deaktivieren der Störungsübertragung. Die Störungsübertragung ist per Voreinstellung deaktiviert, so dass keine Störungen über den Bus übertragen werden.							
Sollwert	Sollwert 0…100% für den Volumenstrom oder die Klappenposition, entsprechend der gewählten Betriebsart.								
Klappenposition	Relative Klappenposition 0100%. Ein Öffnungsbereich von weniger als 090° kann auf 0100% normalisiert werden, indem die adaptive Positionierung aktiviert wird.								
Volumenstrom (relativ)	Volumenstrom relativ zu Vnom, Vmin und Vmax.								
Volumenstrom (absolut)	Volumenstrom in m ³ /h oder m ³ /s je nach gewähltem Datentyp.								
Störung	Identisch mit Grupp	enobjekt #2 (verfügba	r aus Kompatibilitätsgründen).						
Übersteuerung	Zeigt an, ob der Ant Gruppenobjekte #10	rieb durch ein Program 0 / #11 übersteuert wir	nmiertool an der PPS2-Schnitts d.	stelle oder die					
Vorrang-Position 1	Fährt den Antrieb au	uf die durch den zuge	ordneten ETS-Parameter defini	erte Vorrang-Position 1.					
Vorrang-Position 2	Fährt den Antrieb au	uf die durch den zuge	ordneten ETS-Parameter defini	erte Vorrang-Position 2.					
Einregelbetrieb	Fährt den Antrieb fü	ir die Einregelung der	Lüftungsanlage auf Vmax.						
Vmin	Minimaler Volumens	strom relativ zu Vnom							
Vmax	Maximaler Volumen	strom relativ zu Vnom	1.						
Vnom	Nominaler Volumen	strom (absolut).							
Öffnungsrichtung	Öffnungsrichtung de	er Luftklappe.							
Differenzdruck	Messwert des einge	ebauten Differenzdruc	ksensors.						
Koeffizient	Kennwert zur Zuord	Kennwert zur Zuordnung eines nominalen Diferenzdrucks zu einem nominalen Volumenstrom.							
OEM-Reset	Zurücksetzen aller Parameter auf die OEM-Voreinstellung sofern vorhanden.								

2

3

4

5

6

7

8 9

¹ Störungsinformation

9.4 Alarme im LTE-Mode (ACS790)

Die folgenden Alarme sind im LTE-Mode verfügbar.

Alarm-ID	Alarmtext	Beschreibung	Massnahmen	
0	Kein Alarm			
5020	Keine Kommunikation	Ersatzbetrieb aktiv	 Verbindung zum Raumregler / Thermostat prüfen. Wird aufgelöst, wenn neuer Sollwert empfangen wird. 	
90	Differenzdruck Fühlerfehler	Interner Sensorfehler	 Druckanschluss-Schläuche auf Verunreinigung prüfen Gerät neu starten. Problem besteht weiterhin: Kundensupport kontaktieren. 	
91	Differenzdruck Anschlüsse vertauscht	P+ / P- der Druck- anschluss-Schläuche vertauscht	 Anschlussschläuche korrekt zuordnen. 	
1921	Betriebsstunden Lebenszeit erreicht	Erscheint nach einer kumulierten Motorlaufzeit von 365 Tagen	 Gerätestatus und Regel- kreissensitivität prüfen. Problem besteht weiterhin: Kundensupport kontaktieren. 	

9.5 Parameter und Funktionsbeschreibung

9.5.1 Vnom (Nominaler Volumenstrom) [m³/h oder l/s]

Die VAV-Boxen werden entsprechend dem nominalen bzw. Nennvolumenstrom Vnom über einen OEM bestellt, von diesem kalibriert und mit Öffnungsrichtung, Vmin und Vmax (s.u.) eingestellt. Der Vmax kann nicht höher sein als Vnom. Oftmals ist Vmax niedriger als Vnom für mögliche zukünftige Erweiterungen der Volumenströme.

9.5.2 Vmin / Vmax (minimaler / maximaler Volumenstrom) [%]

Diese Werte begrenzen den Nennvolumenstrom relativ zu Vnom. Ihre Wirkung wird im Kapitel **5** beschrieben.

9.5.3 Höhe über Meer [m]

Dieser Korrekturfaktor erhöht die Genauigkeit des Differenzdrucksensors, um die mit zunehmender Höhe abnehmende Luftdichte auszugleichen. Er wird in 500m-Schritten eingestellt, so dass für ein bestimmtes Gebäude die Einstellung verwendet werden sollte, die der tatsächlichen Höhe am nächsten kommt.

Beispiel: Höhe des Gebäudes: 420m ü.M. Einstellung "500m" verwenden

9.5.4 Zwangssteuerung

Der Antrieb kann zu Kontroll-/Wartungszwecken oder für anlagenübergreifende Funktionen (z.B. Nachtkühlung) mit Zwangssteuerung betrieben werden.

9.5.4.1 Lokale Zwangssteuerung:

Der Antrieb geht in diesen Zustand über, wenn ein Servicetool an der Serviceschnittstelle (PPS2) angeschlossen wird. Optionen:

- Öffnen / Schließen / Stop (abhängig von der Öffnungsrichtung)
- Min / Max / Benutzervorgabe (geräteabhängig)

Befindet sich der Antrieb im Ersatzbetrieb, ist er mit lokaler Zwangssteuerung steuerbar, nimmt aber den Ersatzbetrieb wieder auf

- wenn das Servicetool abgetrennt wird,
- wenn die Zeitüberschreitung für die lokale Zwangssteuerung überschritten wird, oder
- wenn die Zwangssteuerung auf "Aus" gestellt wird.

Das Timeout beträgt 10s nach dem letzten Lese- oder Schreibzugriff.

9.5.4.2 Fern-Zwangssteuerung:

Der Antrieb geht in diesen Zustand über, wenn ein Zwangssteuerungsbefehl über den Bus gesendet wird. Die Zwangssteuerung steht als KNX-Gruppenobjekt "Zwangssteuerung Position 1/2" mit zugehörigen Positionsparametern zur Verfügung. Wenn das Gruppenobjekt auf aktiv gesetzt wird, fährt der Antrieb die zugehörige Position mit Zwangssteuerungspriorität an.

9.5.5 Adaptive Positionierung

9.5.5.1 Funktion

Für VAV-Boxen und Luftklappen mit einem Öffnungsbereich kleiner als 0...90° kann das Soll- und Istwertsignal der Klappenposition auf 0...100% adaptiert werden.

- Adaptive Positionierung aus: Soll- und Istwertsignal relativ zu 0°...90°,
 →Bsp.: 0° → 0%, 18° → 20%, 81° → 90% etc.
- Adaptive Positioning **ein**: Soll- und Istwertsignal relativ zu den tatsächlichen mechanischen Endlagen des Klappenöffnungswinkels. Die Endlagen werden in einem Adaptionslauf ermittelt.

→Bsp.: Begrenzung bei 15° und 60°: $15^\circ \rightarrow 0\%$, $45^\circ \rightarrow 66\%$, $60^\circ \rightarrow 100\%$ etc.

9.5.5.2 Ein- und Ausschalten der Adaption

• Unmittelbar nach Setzen des Parameters "Adaptive Positionierung" von **aus** auf **ein** wird eine Adaptionsfahrt durchgeführt. Während der Adaptionsfahrt fährt der Antrieb die beiden mechanischen Endlagen an und speichert diese Positionen dauerhaft als 0%- und 100%-Referenzpunkte, vgl. Diagramm unten.

Wichtig: Die Adaption nicht bei bestehender Geräteblockade einschalten!

- Adaptive Positionierung kann über die Wartungs- und Konfigurationsschnittstelle (ACS931 / ACS941 / AST20) oder über den Bus ein-/ausgeschaltet werden.
- Falls die adaptive Positionierung deaktiviert wird, *bevor die Adaptionsfahrt abgeschlossen ist*, wird die Adaptionsfahrt sofort abgebrochen und die Endlagen werden nicht gespeichert.
- Kommt es während der Adaptionsfahrt zu einem Spannungsausfall, wird sie erneut gestartet, sobald die Spannungsversorgung wieder hergestellt ist.
- Um die Adaptionsfahrt später erneut auszulösen, muss die adaptive Positionierung einmal aus- und wieder eingeschaltet werden.
- Eine Getriebeausrastung kürzer als 20 Sekunden hat keinen Einfluss auf die Adaptionsfahrt.

- A. Adaptive Positionierung wird aktiviert. Der Antrieb fährt zur Gegen-Uhrzeigersinn (GUZS)-Endlage.
- B. GUZS Endlage ist erreicht.
- C. Bleibt die Position für ca. 10s konstant, wird die Endlage persistent gespeichert. Danach fährt der Antrieb in die Uhrzeigersinn (UZS)-Endlage.
- D. UZS-Endlage ist erreicht.
- E. Wenn die Position für ca. 10s konstant bleibt, wird die Endlage persistent gespeichert. Der Antrieb arbeitet mit adaptiertem Soll-/Istwert.

Beispiel: Begrenzungsschraube bei ca. 75% des vollen Öffnungswinkels gesetzt.

Hinweis: Falls die Adaptionsfahrt kurz vor der UZS-Endlage startet, kann es bis zu 5,5 Minuten dauern, bis sie abgeschlossen ist (2x 150s + Wartezeiten in den Endlagen).

9.5.6 Geräteblockade

- Falls ein Antrieb aufgrund einer mechanischen Blockade oder Begrenzungsschraube nicht die Ziel-Position erreicht, wird eine Geräteblockade als Alarm über den Bus ausgegeben, falls die Alarmfunktionen aktiviert sind. Vgl. hierzu auch die Beschreibung der Gruppenobjekte oben.
- Die Geräteblockade wird ca. 30s nach Erreichen der effektiven Endlage erkannt, wenn diese vor der Zielposition liegt.
- Nach 30..35s stoppt der Motor und es wird ein Alarm / eine Statusmeldung über den Bus ausgelöst, falls dies entsprechend konfiguriert ist.
- Eine Geräteblockade kann nicht umgangen werden, indem während der Blockade eine Adaptionsfahrt ausgelöst wird, da in diesem Fall die Endlagen der Adaptionsfahrt nicht gespeichert werden.

9.5.7 Betriebsart

Die Betriebsart bestimmt, ob das Sollwertsignal (0...100 %) vom Raumregler als Volumenstrom- oder als Klappenpositionssollwert interpretiert wird. Falls es als Positionssollwert interpretiert wird, sind die Drucksensor-Istwerte weiterhin verfügbar. Damit kann z.B. der VAV-Regelkreis ausserhalb des VAV-Kompakt-reglers implementiert werden.

9.5.8 Ersatzbetrieb

Falls die Kommunikation vom Raumregler zum Antrieb ausfällt, kann letzterer so konfiguriert werden, dass er in einen definierten Zustand geht. Zur Erkennung des Kommunikationsausfalls wird der Sollwert überwacht und festgestellt, wenn er länger als die eingestellte Wartezeit nicht empfangen wird.

Die Werkseinstellung für den Ersatzbetrieb ist **aus**, d.gh., im Fall eines Kommunikationsausfalls regelt der Antrieb auf den letzten empfangenen Sollwert, bis ein neuer gültiger Wert empfangen wird.

Falls der Ersatzbetrieb aktiviert ist, sind folgende Optionen verfügbar:

- Die mit Ersatzwert Klappenstellung vorgegeben Position wird angefahren.
- Die aktuelle Position ohne Volumenstromregelung halten.

Befindet sich der Antrieb im Ersatzbetrieb und empfängt erneut einen Sollwert, wird der Ersatzbetrieb verlassen und die Regelung wieder aufgenommen.

9.5.9 Neustarten des Antriebs

Ein Neustart ist möglich, indem die Spannungsversorgung unterbrochen und wieder hergestellt wird. Auswirkung: Der Antrieb reinitialisiert und setzt alle Prozesswerte (Soll- und Istwerte) zurück. Parameter- und Gruppenobjekteinstellungen bleiben erhalten.

9.5.10 Zurücksetzen (Reset) des Antriebs

Die Antriebe unterstützen die folgenden Methoden zum Zurücksetzen:

- Lokaler Reset mit dem Drucktaster, vgl. Abschnitt 2.4.
- Reset mit Tool.
- Fern-Reset: Schreiben in das "OEM Reset" Gruppenobjekt.

Auswirkung eines Resets:

- Prozesswerte: Zurücksetzen auf Werkseinstellungen
- Parameter:
 - Anwendungs- und Antriebsparameter werden auf (OEM-) Werkseinstellungen zurückgesetzt,
 - Netzwerkparameter werden nur bei einem lokalen Reset zurückgesetzt, da andernfalls die Kommunikationsverbindung verloren würde.
- Zähler, Status Flags und Fabrikdaten werden nicht zurückgesetzt.

9.6 Priorisierung der Kommunikationsobjekte

Die Kommunikationsobjekte sind entsprechend der untenstehenden Tabelle priorisiert. Ein Zwangs-/Übersteuerungssignal ist aktiv, bis es explizit deaktiviert wird oder das HMI/Tool vom VAV-Kompaktregler getrennt wird. Der Ersatzbetrieb wird deaktiviert, wenn ein neuer Sollwert empfangen wird oder die Versorgungsspannung zurückgesetzt wird.

Priorität	Kommunikationsobjekt	Verhalten nach Spannungs-Reset
1	Manuelle Getriebeausrastung	Unbeeinflusst
2	Adaptionslauf	Wird neu gestartet
3	Lokale Übersteuerung (HMI/Tool)	Wird zurückgesetzt
4	Fern-Übersteuerung "Vorrang-Position 1" (Gruppenobjekt #10)	Wird zurückgesetzt
5	Einregelbetrieb (Gruppenobjekt #12)	Wird zurückgesetzt 1)
6	Fern-Übersteuerung "Override position 2" (Gruppenobjekt #11)	Wird zurückgesetzt
7	Sollwert (Gruppenobjekt #4)	Wird zurückgesetzt
8	Ersatzbetrieb	Wird zurückgesetzt

¹⁾ Nur in der Betriebsart VAV

10 Entsorgung

Allgemeine Hinweise	 Dieses Gerät wurde mit Materialien und Verfahren entwickelt und hergestellt, die der Umwelt Rechnung tragen und dazu den Umweltnormen entsprechen. Für die Entsorgung nach der Produktlebensdauer oder bei Ersatz beachten Sie bitte folgendes: Das Gerät gilt für die Entsorgung als Elektronik-Altgerät im Sinne der
	Europäischen Richtlinie 2012/19/EU (Abfall aus Kunststoffen und Werkstoffen wie Stahl, Ferrit-Magnet etc.) und darf nicht als Haushaltsmüll entsorgt werden.
	 Entsorgen Sie grundsätzlich so umweltverträglich, wie es dem aktuellen Stand der Umweltschutz-, Wiederaufbereitungs-, und Entsorgungstechnik entspricht. Die örtliche und aktuell gültige Gesetzgebung ist unbedingt zu beachten.
	 Das Ziel soll stets die maximale Wiederverwertbarkeit der Grundmaterialien bei möglichst geringer Umweltbelastung sein. Beachten Sie dazu die Material- und Entsorgungshinweise, die möglicherweise auf bestimmten Einzelteilen vorhanden sind.
Umweltdeklaration	Die Umweltdeklaration zu diesen Geräten enthalten unter anderem mengenmässige Angaben zu den verwendeten Materialien. Sie ist auf Verlangen über die Verkaufsstellen erhältlich.

Herausgegeben von: Siemens Schweiz AG Smart Infrastructure Global Headquarters Theilerstrasse 1a 6300 Zug Schweiz Tel. +41 58-724 24 24 www.siemens.com/buildingtechnologies

46 / 46

Siemens Smart Infrastructure VAV-Kompaktregler KNX/PL-Link G..B181.1E/KN

CE1P3547de 2021-10-25

© Siemens Schweiz AG, 2019

Liefermöglichkeiten und technische Änderungen vorbehalten