

Étapes de dimensionnement -Vannes tout-ou-rien, de régulation et indépendantes de la pression

Table des matières

Introduction	2
Construction et dimensionnement	
Informations générales	3
Étapes de dimensionnement - Vannes tout-ou-rien	4
Étapes de dimensionnement - Vannes de régulation standard	6
Étapes de dimensionnement - Vannes de régulation à boisseau sphérique indépendantes	
de la pression	10
Définitions	11

Introduction

Informations pertinentes sur la planification des projets

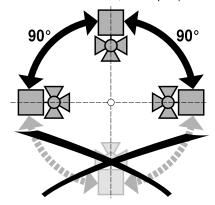
Ces remarques pour la planification du projet servent d'aide pour la sélection et la planification de la projection des vannes de Belimo.

Les données, informations et valeurs limites indiquées sur les fiches techniques et dans les remarques complémentaires pour la planification du projet pour les vannes concernées doivent être prises en compte et/ou respectées, respectivement.

Les vannes Belimo conviennent comme vannes tout-ou-rien ou de régulation dans les systèmes de chauffage, ventilation et climatisation. Il n'est pas permis d'utiliser les vannes Belimo pour des applications en dehors du champ d'application spécifié.

Pour la planification de projets impliquant des vannes tout-ou-rien et de régulation, il est recommandé de prévoir un nombre suffisant de dispositifs d'isolement afin de simplifier les révisions ultérieures, par exemple des tours de refroidissement.

Formulaires de commande


Selon le formulaire de commande, les vannes et les servomoteurs sont fournis soit préassemblés, soit sous forme d'éléments séparés. Vous trouverez des exemples de commande dans le catalogue actuel des produits et des prix de Belimo.

Installation du servomoteur sur la vanne

Le montage du servomoteur et de la vanne peut être effectué sans difficulté sur site, conformément aux instructions d'installation jointes au servomoteur.

Instructions d'installation

Les servomoteurs (combinaisons vanne-servomoteur) peuvent être montés de la verticale à l'horizontale. Toutefois, il n'est pas permis de monter le servomoteur avec l'axe tête en bas.

Mise en service

La mise en service ne peut être effectuée qu'une fois le montage et l'installation de la vanne et du servomoteur terminés.

Entretien

Les organes de réglage hydraulique Belimo sont sans entretien. Pour des interventions sur l'actionneur, couper l'alimentation du servomoteur (débrancher éventuellement le câble électrique). Désactiver les pompes du composant de conduit concerné et fermer les vannes à piston correspondantes (au besoin, attendre que les pompes aient refroidi et réduire la pression du système à la pression ambiante). La remise en service ne pourra avoir lieu que lorsque la vanne et son servomoteur auront été remontés conformément aux instructions et que les conduits auront été remplis dans les règles de l'art.

Extension ultérieure des vannes

Dans le cas d'applications nécessitant une extension ultérieure, il est recommandé de prendre des précautions appropriées, par exemple l'utilisation de raccords détachables supplémentaires.

Mise au rebut

En cas d'élimination, le servomoteur doit être décomposé en ses différents matériaux et éliminé conformément aux réglementations nationales et locales.

Informations générales

Dimensions

Les dimensions de la combinaison vanne-servomoteur utilisée dépendent non seulement du diamètre nominal de la vanne, mais aussi du servomoteur utilisé. Les dimensions sont indiquées sur les fiches techniques respectives.

Dégagements de conduits

Les dégagements minimaux entre les conduits et les parois et plafonds nécessaires à la bonne mise en oeuvre des vannes dépendent non seulement des dimensions de la vanne mais également du servomoteur sélectionné. Les dimensions se trouvent sur les fiches techniques respectives.

Qualité de l'eau requise

Les dispositions prévues par la norme VDI 2035 relative à la qualité de l'eau sont à respecter.

Filtre à impuretés

Nous recommandons de toujours utiliser un filtre à impuretés installé de manière centralisée afin que les éléments de commande d'eau de Belimo puissent également assurer une commande fiable pendant de longues périodes.

Étapes de dimensionnement - Vannes tout-ou-rien

- 1. Détermination de la valeur kvs
- Prérequis : le diamètre nominal du conduit est connu
- Sélection d'une vanne possible sur la base du diamètre nominal du conduit (diamètre nominal de la vanne ≤ diamètre nominal du conduit)
- Les valeurs k_{vs} correspondantes peuvent être trouvées dans les fiches techniques de Belimo en fonction du diamètre nominal souhaité
- 2. Détermination du débit volumétrique V₁₀₀

Si le coefficient thermique d'un consommateur et la différence de température associée entre l'alimentation et le retour sont connus, alors le débit volumétrique peut être calculé avec la formule suivante. La densité et la capacité thermique de l'eau sont prises en compte en tant que valeurs constantes avec un facteur de 0.86.

$$\dot{V}_{100} = 0.86 \cdot \frac{Q_{100}}{\Delta T}$$

 \dot{V}_{100} [m³/h] Q_{100} [kW] ΔT [K]

3. Calcul de la pression différentielle Δp_{v100}

$$\Delta p_{v100} = \left(\frac{\dot{V}_{100}}{k_{vs}}\right)^2 \cdot 100$$

 $\begin{array}{lll} p_{v100} & [kPa] \\ V_{100} & [m^3/h] \\ k_{vs} & [m^3/h] \end{array}$

4. Sélection de la vanne appropriée

La vanne appropriée peut être sélectionnée à l'aide des informations des étapes 1 – 3. L'aperçu suivant montre les vannes tout-ou-rien de Belimo et renvoie à d'autres documents..

k_{vs} [m ³ /h]	0,18	0,18	1549	8,649	1549	
Type de vanne	Vanne de zone		Vannes à boisseau sphérique tout-ou-rien			
Désignation	QCV	QCV	Vannes à boisseau sphérique tout-ou-rien	Vannes à boisseau sphérique tout-ou-rien	Vannes à boisseau sphérique tout-ou-rien	
Raccordement	Taraudées	Filetage mâle	Taraudées	Filetage mâle	Bride	
2 voies	C2Q	C4Q	R2	R4	R6R	
3 voies	C3Q	C5Q	R3	R5	R7R	
DN	15/20	15/20	15-50	15-50	15-50	
PN	25	25	16	16	6	
Température du fluide	290°C	290°C	-10120°C	6100°C	-10100°C	
Remarques	3 v	one 2 voies et oies CV	Vannes de régulation à boisseaux sphériques 2 voies et 3 voies			

Étapes de dimensionnement - Vannes tout-ou-rien

k _{vs} [m ³ /h]	1,932	0,6340	0,4320	6301000	4542800
Type de vanne		Var	nnes à siège		Vanne papillon
Désignation	Vannes à siège	Vannes à siège	Vannes à siège	Grande vanne à siège	Vanne papillon
Raccordement	Taraudées	Filetage mâle	Brides	Brides	Brides
2 voies	H2X-S	H4B	H6R ¹⁾ H6N ²⁾ H6S / H6SP ²⁾ H6X ³⁾	H6W	D6
3 voies	H3X-S	H5B	H7R ¹⁾ H7N ²⁾ H7X / H7S. ³⁾	H7W	D7 ⁶⁾
DN	15-50	15-50	15-150	200-250	25-700
PN	25	16	6 / 16 / 25	16	6 / 10 / 16 4)
Température du fluide	0130°C	5120°C	5)	5120°C	–20120°C
Remarques		Vannes papillon			

¹⁾ PN 6

DN 350: Bride PN 10/16;

DN 400-700: Bride PN 16

D6..NL, D6..WL: DN 25-150: Bride PN 10/16;

DN 200-700: Bride PN 16

5...150°C: H6..S, H6..SP, H6..X.., H7..S

5...200°C: H7..X..

²⁾ PN 16

³⁾ PN 25

⁴⁾ D6..N, D6..W: DN 25-300: Bride PN 6/10/16;

⁵⁾ 5...120°C: H6..R, H7..R, H6..N, H7..N, H6..W.., H7..W..;

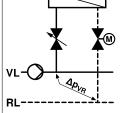
⁶⁾ Disponible en DN 150-300

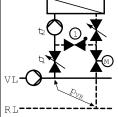
La bonne conception de vanne

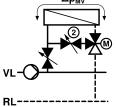
Afin d'assurer qu'une vanne atteigne de bonnes courbes caractéristiques, permettant ainsi d'assurer une longue durée de vie à l'élément de contrôle final, une configuration correcte de la vanne avec l'autorité de la vanne correcte est requise. L'autorité de la vanne correspond à la mesure des courbes caractéristiques de la vanne en liaison avec le réseau hydraulique. L'autorité de la vanne est le rapport de charge nominale entre la pression différentielle de la vanne complètement ouverte (Δp_{v100}) au débit nominal et la pression différentielle maximale présente avec la vanne fermée. Plus l'autorité de la vanne est grande, meilleures sont les courbes caractéristiques. Plus l'autorité de la vanne diminue, plus le fonctionnement opérationnel de la vanne dévie de la caractéristique de la vanne, ce qui entraîne une moins bonne régulation du débit volumétrique. Dans la pratique, on s'efforce d'obtenir une autorité de la vanne supérieure à 0.5. Le dimensionnement d'une vanne est expliqué ci-après en six étapes.

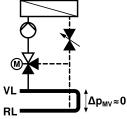
1. Déterminer l'agencement de base du circuit hydraulique et Δp_{v100}

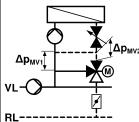
Les dégagements minimaux entre les conduits et les parois et plafonds nécessaires à la bonne mise en oeuvre des vannes dépendent des dimensions de la vanne et du servomoteur sélectionné. Les dimensions se trouvent sur les fiches techniques respectives.


Vannes de régulation 2 voies


Les vannes de régulation 2 voies de Belimo doivent être prévues dans le retour comme dispositifs d'étranglement. Cela réduit les charges thermiques sur les éléments de fermeture de la vanne. Le sens du débit prescrit peut être obtenu à partir des remarques complémentaires pour les vannes de régulation à


Vannes de régulation 3 voies


Les vannes de régulation 3 voies sont des appareils de mixage. Le sens du débit doit être respecté pour tous les niveaux de pression. La présence ou non d'une installation dans l'alimentation ou le retour dépend du circuit hydraulique choisi. Le sens du débit prescrit peut être obtenu à partir des remarques complémentaires pour la planification du projet pour les vannes de régulation à boisseau sphérique et les vannes à siège.


boisseau sphérique et les	vannes à siège.			
Circuit d'étranglement	Circuit d'injection avec dispositif d'étranglement	Circuit de division	Circuit de mélange	Circuit d'injection avec vanne de régulation à boisseau sphérique 3 voies
p _{v100} > Δp _{VR} / 2 Valeurs caractéristiques : 10 kPa < p _{v100} < 200 kPa	$p_{v100} > \Delta p_{VR} / 2$ Valeurs caractéristiques : 10 kPa < $p_{v100} < 200$ kPa	$p_{v100} > \Delta p_{MV}$ Valeurs caractéristiques : 5 kPa < $p_{v100} < 50$ kPa	$p_{v100} > \Delta p_{MV}$ Valeurs caractéristiques : $\Delta p_{v100} > 3$ kPa (avec distr. dépressurisé) Autres circuits de mélange : 3 kPa < $p_{v100} < 30$ kPa	$p_{MV1} + \Delta p_{MV2} \approx 0$ Valeurs caractéristiques : $p_{v100} > 3 \text{ kPa}$
¥.	t ₂ O O	Δp _{MV}	♦	Δp _{MV2}

Légende :

Vanne de régulation 2 voies, avec servomoteur

Vanne de régulation 3 voies, avec servomoteur

Vanne de régulation à boisseau sphérique 6 voies, avec servomoteur

Pompe

Vanne d'équilibrage

Vanne antiretour Alimentation

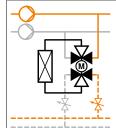
Retour

Dans certains pays, t2 < t1 est spécifié.

2

Grâce au débit réduit dans la dérivation d'une vanne de régulation à boisseau sphérique 3 voies, une vanne d'équilibrage n'est pas nécessaire

Vanne de régulation à boisseau sphérique 6 voies


Les vannes de régulation à boisseau sphérique 6 voies de Belimo ont été spécialement conçues pour une utilisation avec des éléments de chauffage et de refroidissement combinés. Pour ce faire, une vanne de régulation à boisseau sphérique 6 voies assure la fonction de quatre vannes de passage ou de deux vannes de passage et d'une vanne de dérivation. La configuration suivante est réalisée avec des vannes de régulation à boisseau sphérique 6 voies pour chaque séquence (chauffage et refroidissement)

Valeurs caractéristiques :

 $p_{v100} \le 100 \text{ kPa}$

Pour un fonctionnement silencieux :

 $p_{v100} \leq 50 \text{ kPa}$

2. Détermination du débit volumétrique V₁₀₀

Si le coefficient thermique d'un consommateur et la différence de température associée entre l'alimentation et le retour sont connus, alors le débit volumétrique peut être calculé avec la formule suivante. La densité et la capacité thermique de l'eau sont prises en compte en tant que valeurs constantes avec un facteur de 0.86.

$$\dot{V}_{100} = 0.86 \cdot \frac{Q_{100}}{\Delta T}$$

 \dot{V}_{100} [m³/h] Q_{100} [kW] ΔT [K]

3. Détermination mathématique de la valeur

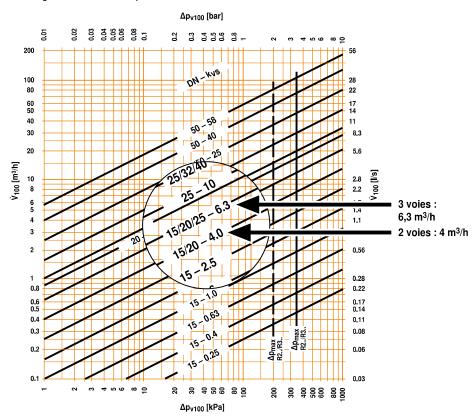
Une fois que le débit volumétrique a été calculé, le facteur de débit k_V peut être déterminé à une pression différentielle de 100 kPa.

$$k_v = \frac{\dot{V}_{100}}{\sqrt{\frac{\Delta p_{v100}}{100}}}$$

 $\begin{array}{ccc} \Delta p_{v100} & [kPa] \\ \dot{V}_{100} & [m^3/h] \\ k_v & [m^3/h] \end{array}$

4. Sélection de la vanne appropriée (sélection de la valeur k_{vs})

La valeur k_V de l'étape 3 peut être utilisée pour déterminer une valeur k_{VS} dans le diagramme fonctionnel (voir les remarques supplémentaires pour la planification du projet pour la vanne de régulation à boisseau sphérique, la vanne à siège, la vanne papillon ou la QCV).


Si la valeur $k_{\text{\tiny V}}$ se situe entre deux lignes $k_{\text{\tiny V}}$ dans le diagramme fonctionnel :

- La valeur k_{V} calculée est plus proche de la ligne k_{V} inférieure, sélectionner la valeur k_{VS} inférieure
- La valeur k_{v} calculée est plus proche de la ligne k_{v} supérieure, sélectionner la valeur k_{vs} la plus élevée
- Si la valeur k_v se situe exactement entre deux lignes k_v, alors sélectionner la plus petite valeur k_{vs} pour une vanne de régulation 2 voies et la valeur k_{vs} plus grande pour une vanne de régulation 3 voies.

Si la valeur k_V est supérieure à la ligne k_V la plus élevée, sélectionner la plus grande valeur k_{VS} possible.

Si la valeur k_V est inférieure à la ligne k_V la plus basse, sélectionner la plus petite valeur k_{VS} possible.

À cet égard, voici un exemple avec k_v calculé = 5,15 m³/h :

5. Vérification de la pression différentielle résultante $\Delta p_{\nu 100}$

Une fois qu'une vanne a été sélectionnée, la pression différentielle résultante Δp_{v100} peut être vérifiée.

La pression différentielle résultante Δp_{v100} est pertinente pour le calcul de l'autorité de la vanne P_v :

$$\Delta p_{v100} = \left(\frac{\dot{V}_{100}}{k_{vs}}\right)^2 \cdot 100$$

 $\begin{array}{ccc} p_{v100} & [kPa] \\ \dot{V}_{100} & [m^3/h] \\ k_{vs} & [m^3/h] \end{array}$

6. Vérification de l'autorité de la vanne P_{ν} (stabilité de la régulation)

Vérifier P_v avec la pression différentielle résultante Δp_{v100} . Une autorité de la vanne $\geq 0,5$ est recherchée pour :— Distributeur sous pression à débit volumétrique variable (vannes de régulation 2 voies)

$$P_v = \frac{\Delta p_{v100}}{\Delta p_{VR}}$$

 Distributeur sous pression à débit volumétrique constant ou distributeur basse pression à débit volumétrique variable (vannes de régulation 3 voies)

k _{vs} [m ³ /h]	0,18	0,18	0,254	0,2558	0,2540	0,63320	
Type de vanne	Vanne	de zone	Vannes de régulation à boisseau sphérique				
Désignation	QCV	QCV	Vanne de régulation à 6 voies	Vanne de régulation à boisseau sphérique	Vanne de régulation à boisseau sphérique	Vanne de régulation à boisseau sphérique	
Raccordement	Taraudées	Filetage mâ l e	Taraudées	Taraudées	Filetage mâle	Brides	
2 voies	C2Q	C4Q		R2	R4 R4K	R6R ¹⁾ R6W ²⁾	
3 voies				R3	R5 R5K	R7R ¹⁾	
6 voies			R30B2/B3				
DN	15 / 20	15 / 20	15-25	15-50	10-50	15-150	
PN	25	25	16	16	16	6 / 16	
Température du fluide	290°C	290°C	680°C	-10120°C	6100°C	3)	
Remarques compl. pour la planification du projet	Vanne de zone 2 voies QCV		Vannes 6 voies de régulation à boisseaux sphériques	Vannes de régulation à boissea sphériques 2 voies et 3 voies			

¹⁾ PN 6

²⁾ PN 16

^{3) 5...110°}C: R6..R

^{-10...120°}C: R6..W

^{-10...100°}C: R7..R

k_{vs} [m ³ /h]	1,932	0,6340	0,4320	6301000	2411760
Type de vanne	Va	nnes de régul	lation à boisseau sph	érique	Vanne papillon
Désignation	Vannes à siège	Vannes à siège	Vannes à siège	Grande vanne à siège	Vanne papillon
Raccordement	Taraudées	Filetage mâle	Brides	Brides	Brides
2 voies	H2X-S	H4B	H6R ¹⁾ H6N ²⁾ H6S / H6SP ²⁾ H6X ³⁾	H6W	D6
3 voies	H3X-S	H5B	H7R ¹⁾ H7N ²⁾ H7X ³⁾	H7W	D7 ⁶⁾
6 voies					
DN	15-50	15-50	15-150	200-250	25-700
PN	25	16	6 / 16 / 25	16	6 / 10 / 16 4)
Température de fluide	0130°C	5120°C	5)	5120°C	–20120°C
Remarques compl. pour la planification du projet	Vannes à siège				Vannes papillon

¹⁾ PN 6

DN 250-350: Bride PN 10/16; DN 400-700: Bride PN 16

D6..NL, D6..WL: DN 25-150: Bride PN 10/16;

DN 200-700: Bride PN 16

⁵⁾ 5...120°C: H6..R, H7..R, H6..N, H7..N, H6..W.., H7..W..;

5...150°C: H6..S, H6..SP, H6..X.., H7..S;

5...200°C: H7..X..,

6) Disponible en DN 150-300

²⁾ PN 16

³⁾ PN 25

⁴⁾ D6..N, D6..W: DN 25-300: Bride PN 6/10/16;

Étapes de dimensionnement - Vannes de régulation à boisseau sphérique indépendantes de la pression

Pression différentielle Δp_{v100}

Les pressions différentielles fluctuantes avec des vannes de régulation à boisseau sphérique indépendantes de la pression sont compensées automatiquement et n'ont aucune influence sur le débit. La pression différentielle doit se situer dans une plage définie afin d'assurer un fonctionnement parfait. Les spécifications concernant les pressions différentielles minimale et maximale peuvent être trouvées dans les fiches techniques correspondantes.

1. Détermination du débit volumétrique V_{max}

Si le coefficient thermique d'un consommateur et la différence de température associée entre l'alimentation et le retour sont connus, alors le débit volumétrique peut être calculé avec la formule suivante. La densité et la capacité thermique de l'eau sont prises en compte en tant que valeurs constantes avec un facteur de 0,86.

$$\dot{V}_{100} = 0.86 \cdot \frac{Q_{100}}{\Delta T}$$

 $\begin{array}{ll} \dot{V}_{max} & [m^3/h] \\ Q_{100} & [kW] \\ \Delta T & [K] \end{array}$

2. Sélection de la vanne appropriée

Les informations de l'étape 1 sont déjà suffisantes pour sélectionner la vanne appropriée. L'aperçu suivant montre les vannes de régulation à boisseau sphérique indépendantes de la pression de Belimo et renvoie à une documentation complémentaire. Les fiches techniques correspondantes contiennent des informations concernant $\dot{V}_{nom}.$ Il est à noter qu'il est obligatoire d'avoir $\dot{V}_{max} \leq \dot{V}_{nom}.$ La plage de réglage autorisée est précisée dans les fiches techniques correspondantes.

V _{max} [l/s]	0,081,0	0,0060,583
Désignation	PIFLV	PIQCV
Réf. de vanne	Vanne limitatrice de débit	Vanne de régulation à boisseau sphérique mécaniquement indépendante de la pression
Raccordement	Taraudées	Taraudées
2 voies	C2QFL R225FL	C2QP(T)
DN	15-25	15-25
PN	25	25
Température du fluide	260°C	290°C

Étapes de dimensionnement - Vannes de régulation à boisseau sphérique indépendantes de la pression

V _{max} [l/s]	0,0180,65	0,114,8	3,645	0,114,8	3,645
Désignation	6 voies EPIV	EPIV	EPIV	Belimo Energy Valve™	Belimo Energy Valve™
Réf. de vanne	Vanne de régulation à boisseau sphérique mécaniquement indépendante de la pression	Vanne électronique de régulation caractérisée, indépendante de la pression, avec contrôle de débit par capteur		Vanne de régulation à boisseau sphérique électroniquement indépendante de la pression, avec mesure du débit déclenché par capteur ou contrôle de puissance et fonction de surveillance de l'énergie	
Raccordement	Taraudées	Taraudées	Brides	Taraudées	Brides
2 voies	EPR-R6+BAC	EPR+MP	P6WE-MP	EVR+BAC	P6WEV-BAC
DN	15 / 20	15-50	65-150	15-50	65-150
PN	16	16	16	16	16
Température du fluide	680°C	–10120°C	–10120°C	–10120°C	-10120°C

Définitions

- k_v Facteur de débit ou coefficient de débit. La valeur k_v correspond au débit volumétrique de l'eau à travers une vanne (en m³/h ou l/min) avec une pression différentielle de 100 kPa (1 bar), une température d'eau de 5 à 40 °C et un angle de retard fixe.
- kys Valeur ky de la vanne à un degré de 100% d'ouverture
- Δp_{v100} Pression différentielle avec vanne entièrement ouverte
 - Δp_{vR} Pression différentielle aux branchements respectifs (alimentation/retour) à la charge nominale
- **Δp_{mv}** Pression différentielle dans la partie à quantité variable avec la charge nominale (par exemple l'échangeur)
- \dot{V}_{100} Débit nominal pour p_v100
- Q₁₀₀ Puissance de chauffage ou de refroidissement du consommateur
- **ΔT** Différence de température entre alimentation et retour
- P_{v} L'autorité de la vanne : Mesure des courbes caractéristiques de la vanne en liaison avec le réseau hydraulique. L'autorité de la vanne est le rapport entre la pression différentielle de la vanne complètement ouverte (Δp_{v} 100) au débit nominal et la pression différentielle maximale présente avec la vanne fermée.
- \dot{V}_{max} C'est le débit maximum d'une vanne indépendante de la pression qui a été réglée avec le plus grand signal de positionnement, par exemple 10 V.
- Vnom Débit le plus élevé possible d'une vanne indépendante de la pression, valeur de catalogue, état
 à la livraison

Documentation complémentaire

- · Vue d'ensemble des combinaisons vanne/servomoteur
- Remarques pour la planification du projet : vannes papillon pour les applications tout-ou-rien et le mode de commande
- Remarques pour la planification du projet : vanne de zone 2 voies QCV™/ZoneTight™
- Remarques pour la planification du projet : vannes de régulation à boisseau sphérique 2 voies et 3 voies
- Remarques pour la planification du projet : vannes de régulation à boisseau sphérique 6 voies DN 15 et DN 20

Tout inclus.

BELIMO Automation SA 43 route André Pillier 1720 Corminboeuf, Suisse

Tél. +41 26 460 83 10 vente@belimo.ch www.belimo.com

